Limits...
Metabolic interrogation as a tool to optimize chemotherapeutic regimens

View Article: PubMed Central - PubMed

ABSTRACT

Platinum-based (Pt) chemotherapy is broadly utilized in the treatment of cancer. Development of more effective, personalized treatment strategies require identification of novel biomarkers of treatment response. Since Pt compounds are inactivated through cellular metabolic activity, we hypothesized that metabolic interrogation can predict the effectiveness of Pt chemotherapy in a pre-clinical model of head and neck squamous cell carcinoma (HNSCC).

We tested the effects of cisplatin (CDDP) and carboplatin (CBP) on DNA damage, activation of cellular death cascades and tumor cell metabolism, specifically lactate production. Pt compounds induced an acute dose-dependent, transient drop in lactate generation in vitro, which correlated with effects on DNA damage and cell death. Neutralization of free radical stress abrogated these effects. The magnitude of this effect on lactate production correlated with the differential sensitivity of HNSCC cells to Pt compounds (CDDP vs CBP) and p53-driven Pt chemotherapy resistance. Using dual flank xenograft tumors, we demonstrated that Pt-driven effects on lactate levels correlate with effects on tumor growth delay in a dose-dependent manner and that lactate levels can define the temporal profile of Pt chemotherapy-induced metabolic stress. Lactate interrogation also predicted doxorubicin effects on cell death in both solid tumor (HNSCC) and acute myelogenous leukemia (AML) cell lines.

Real-time metabolic interrogation of acute changes in cell and tumor lactate levels reflects chemotherapy effects on DNA damage, cell death and tumor growth delay. We have identified a real-time biomarker of chemotherapy effectiveness which can be used to develop adaptive, iterative and personalized treatment regimens against a variety of solid and hematopoietic malignancies.

No MeSH data available.


Related in: MedlinePlus

Lactate interrogation predicts doxorubicin cytotoxic effects in HNSCC and ALLDoxorubicin induced a dose-dependent decrease in cellular lactate levels in HNSCC HN30 A. and AML OCI-AML13 C. cell lines. B. OCI-AML13 cells were exposed to increasing doses of doxorubicin. NADH and NAD+ levels were ascertained biochemically and the ratio was calculated. Doxorubicin induced a dose dependent decrease in the NADH/NAD+ ratio. D. AML cells were exposed to either control media or media with doxorubicin at 0.01 and 0.1 μM for 1hr. Doxorubicin was then removed and cells were harvested at various time points following withdrawal. Lactate levels were measured at each time point and compared to the control (untreated) condition. * indicates p-value < 0.05 compared to corresponding control condition. All values normalized to corresponding control condition. Each experiment was carried out at least in triplicate, with values indicating means and error bars representing standard deviation.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5392315&req=5

Figure 6: Lactate interrogation predicts doxorubicin cytotoxic effects in HNSCC and ALLDoxorubicin induced a dose-dependent decrease in cellular lactate levels in HNSCC HN30 A. and AML OCI-AML13 C. cell lines. B. OCI-AML13 cells were exposed to increasing doses of doxorubicin. NADH and NAD+ levels were ascertained biochemically and the ratio was calculated. Doxorubicin induced a dose dependent decrease in the NADH/NAD+ ratio. D. AML cells were exposed to either control media or media with doxorubicin at 0.01 and 0.1 μM for 1hr. Doxorubicin was then removed and cells were harvested at various time points following withdrawal. Lactate levels were measured at each time point and compared to the control (untreated) condition. * indicates p-value < 0.05 compared to corresponding control condition. All values normalized to corresponding control condition. Each experiment was carried out at least in triplicate, with values indicating means and error bars representing standard deviation.

Mentions: The effects of doxorubicin on cellular lactate levels were ascertained using both HNSCC (HN30) and AML (OCI-AML3) cell lines. In both cell lines, doxorubicin induced a dose-dependent decrease in cellular lactate levels acutely following exposure (Figure 6A and 6C); this effect occurred close to the GI50 of both cell lines: HN30 (0.01μM) and OCI-AML13 (0.01μM). As previously shown in HNSCC cells, the acute decrease in lactate mirrored an acute reduction in the NADH/NAD+ ration, consistent with a free radical mediated effect (Figure 6B). Doxorubicin effects on AML lactate levels were demonstrated to be transient, resulting in recovery of lactate levels following drug withdrawal Figure 6D.


Metabolic interrogation as a tool to optimize chemotherapeutic regimens
Lactate interrogation predicts doxorubicin cytotoxic effects in HNSCC and ALLDoxorubicin induced a dose-dependent decrease in cellular lactate levels in HNSCC HN30 A. and AML OCI-AML13 C. cell lines. B. OCI-AML13 cells were exposed to increasing doses of doxorubicin. NADH and NAD+ levels were ascertained biochemically and the ratio was calculated. Doxorubicin induced a dose dependent decrease in the NADH/NAD+ ratio. D. AML cells were exposed to either control media or media with doxorubicin at 0.01 and 0.1 μM for 1hr. Doxorubicin was then removed and cells were harvested at various time points following withdrawal. Lactate levels were measured at each time point and compared to the control (untreated) condition. * indicates p-value < 0.05 compared to corresponding control condition. All values normalized to corresponding control condition. Each experiment was carried out at least in triplicate, with values indicating means and error bars representing standard deviation.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5392315&req=5

Figure 6: Lactate interrogation predicts doxorubicin cytotoxic effects in HNSCC and ALLDoxorubicin induced a dose-dependent decrease in cellular lactate levels in HNSCC HN30 A. and AML OCI-AML13 C. cell lines. B. OCI-AML13 cells were exposed to increasing doses of doxorubicin. NADH and NAD+ levels were ascertained biochemically and the ratio was calculated. Doxorubicin induced a dose dependent decrease in the NADH/NAD+ ratio. D. AML cells were exposed to either control media or media with doxorubicin at 0.01 and 0.1 μM for 1hr. Doxorubicin was then removed and cells were harvested at various time points following withdrawal. Lactate levels were measured at each time point and compared to the control (untreated) condition. * indicates p-value < 0.05 compared to corresponding control condition. All values normalized to corresponding control condition. Each experiment was carried out at least in triplicate, with values indicating means and error bars representing standard deviation.
Mentions: The effects of doxorubicin on cellular lactate levels were ascertained using both HNSCC (HN30) and AML (OCI-AML3) cell lines. In both cell lines, doxorubicin induced a dose-dependent decrease in cellular lactate levels acutely following exposure (Figure 6A and 6C); this effect occurred close to the GI50 of both cell lines: HN30 (0.01μM) and OCI-AML13 (0.01μM). As previously shown in HNSCC cells, the acute decrease in lactate mirrored an acute reduction in the NADH/NAD+ ration, consistent with a free radical mediated effect (Figure 6B). Doxorubicin effects on AML lactate levels were demonstrated to be transient, resulting in recovery of lactate levels following drug withdrawal Figure 6D.

View Article: PubMed Central - PubMed

ABSTRACT

Platinum-based (Pt) chemotherapy is broadly utilized in the treatment of cancer. Development of more effective, personalized treatment strategies require identification of novel biomarkers of treatment response. Since Pt compounds are inactivated through cellular metabolic activity, we hypothesized that metabolic interrogation can predict the effectiveness of Pt chemotherapy in a pre-clinical model of head and neck squamous cell carcinoma (HNSCC).

We tested the effects of cisplatin (CDDP) and carboplatin (CBP) on DNA damage, activation of cellular death cascades and tumor cell metabolism, specifically lactate production. Pt compounds induced an acute dose-dependent, transient drop in lactate generation in vitro, which correlated with effects on DNA damage and cell death. Neutralization of free radical stress abrogated these effects. The magnitude of this effect on lactate production correlated with the differential sensitivity of HNSCC cells to Pt compounds (CDDP vs CBP) and p53-driven Pt chemotherapy resistance. Using dual flank xenograft tumors, we demonstrated that Pt-driven effects on lactate levels correlate with effects on tumor growth delay in a dose-dependent manner and that lactate levels can define the temporal profile of Pt chemotherapy-induced metabolic stress. Lactate interrogation also predicted doxorubicin effects on cell death in both solid tumor (HNSCC) and acute myelogenous leukemia (AML) cell lines.

Real-time metabolic interrogation of acute changes in cell and tumor lactate levels reflects chemotherapy effects on DNA damage, cell death and tumor growth delay. We have identified a real-time biomarker of chemotherapy effectiveness which can be used to develop adaptive, iterative and personalized treatment regimens against a variety of solid and hematopoietic malignancies.

No MeSH data available.


Related in: MedlinePlus