Limits...
Biocompatible nanoemulsions based on hemp oil and less surfactants for oral delivery of baicalein with enhanced bioavailability

View Article: PubMed Central - PubMed

ABSTRACT

Baicalein (BCL) possesses high pharmacological activities but low solubility and stability in the intestinal tract. This study aimed to probe the potential of nanoemulsions (NEs) consisting of hemp oil and less surfactants in ameliorating the oral bioavailability of BCL. BCL-loaded NEs (BCL-NEs) were prepared by high-pressure homogenization technique to reduce the amount of surfactants. BCL-NEs were characterized by particle size, entrapment efficiency (EE), in vitro drug release, and morphology. Bioavailability was studied in Sprague-Dawley rats following oral administration of BCL suspensions, BCL conventional emulsions, and BCL-NEs. The obtained NEs were ~90 nm in particle size with an EE of 99.31%. BCL-NEs significantly enhanced the oral bioavailability of BCL, up to 524.7% and 242.1% relative to the suspensions and conventional emulsions, respectively. BCL-NEs exhibited excellent intestinal permeability and transcellular transport ability. The cytotoxicity of BCL-NEs was documented to be low and acceptable for oral purpose. Our findings suggest that such novel NEs and preparative process provide a promising alternative to current formulation technologies and suitable for oral delivery of drugs with bioavailability issues.

No MeSH data available.


Related in: MedlinePlus

Effects of ratios of drug/excipients (A) and surfactants/oil (B) as well as homogenization cycle (C) with 20,000 psi on the particle size of BCL-NEs (mean ± StD, n=3), in which one factor was set as independent variable keeping other two factors as invariant. *P<0.05; **P<0.01.Abbreviations: BCL, baicalein; NEs, nanoemulsions; StD, standard deviation.
© Copyright Policy
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5391827&req=5

f2-ijn-12-2923: Effects of ratios of drug/excipients (A) and surfactants/oil (B) as well as homogenization cycle (C) with 20,000 psi on the particle size of BCL-NEs (mean ± StD, n=3), in which one factor was set as independent variable keeping other two factors as invariant. *P<0.05; **P<0.01.Abbreviations: BCL, baicalein; NEs, nanoemulsions; StD, standard deviation.

Mentions: As a rule, NEs can be formed via self-emulsifying with agitation or vortexing in the presence of several emulsifiers. For instance, to achieve a good self-nanoemulsifying drug delivery system of econazole nitrate, 60% (w/w) Cremophor® RH 40 and high ratio of cosurfactant (Transcutol® HP) were used in the formulation.15 However, the use of massive emulsifiers or surfactants will give rise to high physiological toxicity. To minimize the use of surfactants and achieve nanoscale emulsions, HPH was adopted in the processing of BCL-NEs to decrease the particle size by providing strong mechanical energy. This preparative technique resembles the one recruited in the preparation of solid lipid nanoparticles or nanostructured lipid carriers.16,17 The particle size of nanocarriers influences the intestinal absorption of payload. In the preliminary experiment, we found that factors affecting the particle size of BCL-NEs mainly included the ratios of drug/excipients, surfactants/oil, and the homogenizing condition. The effects of formulation variables on the particle size are shown in Figure 2. The ratio of drug/oil had a significant effect on the particle size of BCL-NEs. High drug involvement resulted in larger emulsion droplets due to impaired emulsifiability of inner oil phase. Conversely, high ratio of surfactants exerted a positive effect on the reduction of particle size. Of note, NEs <100 nm were still able to be produced from the formulation with less surfactants (10% relative to the oil). In the case of homogenizing condition, the particle size of BCL-NEs decreased with an increase in homogenization cycle at 20,000 psi. But there was no significant difference between 8 and 12 cycles in terms of the particle size.


Biocompatible nanoemulsions based on hemp oil and less surfactants for oral delivery of baicalein with enhanced bioavailability
Effects of ratios of drug/excipients (A) and surfactants/oil (B) as well as homogenization cycle (C) with 20,000 psi on the particle size of BCL-NEs (mean ± StD, n=3), in which one factor was set as independent variable keeping other two factors as invariant. *P<0.05; **P<0.01.Abbreviations: BCL, baicalein; NEs, nanoemulsions; StD, standard deviation.
© Copyright Policy
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5391827&req=5

f2-ijn-12-2923: Effects of ratios of drug/excipients (A) and surfactants/oil (B) as well as homogenization cycle (C) with 20,000 psi on the particle size of BCL-NEs (mean ± StD, n=3), in which one factor was set as independent variable keeping other two factors as invariant. *P<0.05; **P<0.01.Abbreviations: BCL, baicalein; NEs, nanoemulsions; StD, standard deviation.
Mentions: As a rule, NEs can be formed via self-emulsifying with agitation or vortexing in the presence of several emulsifiers. For instance, to achieve a good self-nanoemulsifying drug delivery system of econazole nitrate, 60% (w/w) Cremophor® RH 40 and high ratio of cosurfactant (Transcutol® HP) were used in the formulation.15 However, the use of massive emulsifiers or surfactants will give rise to high physiological toxicity. To minimize the use of surfactants and achieve nanoscale emulsions, HPH was adopted in the processing of BCL-NEs to decrease the particle size by providing strong mechanical energy. This preparative technique resembles the one recruited in the preparation of solid lipid nanoparticles or nanostructured lipid carriers.16,17 The particle size of nanocarriers influences the intestinal absorption of payload. In the preliminary experiment, we found that factors affecting the particle size of BCL-NEs mainly included the ratios of drug/excipients, surfactants/oil, and the homogenizing condition. The effects of formulation variables on the particle size are shown in Figure 2. The ratio of drug/oil had a significant effect on the particle size of BCL-NEs. High drug involvement resulted in larger emulsion droplets due to impaired emulsifiability of inner oil phase. Conversely, high ratio of surfactants exerted a positive effect on the reduction of particle size. Of note, NEs <100 nm were still able to be produced from the formulation with less surfactants (10% relative to the oil). In the case of homogenizing condition, the particle size of BCL-NEs decreased with an increase in homogenization cycle at 20,000 psi. But there was no significant difference between 8 and 12 cycles in terms of the particle size.

View Article: PubMed Central - PubMed

ABSTRACT

Baicalein (BCL) possesses high pharmacological activities but low solubility and stability in the intestinal tract. This study aimed to probe the potential of nanoemulsions (NEs) consisting of hemp oil and less surfactants in ameliorating the oral bioavailability of BCL. BCL-loaded NEs (BCL-NEs) were prepared by high-pressure homogenization technique to reduce the amount of surfactants. BCL-NEs were characterized by particle size, entrapment efficiency (EE), in vitro drug release, and morphology. Bioavailability was studied in Sprague-Dawley rats following oral administration of BCL suspensions, BCL conventional emulsions, and BCL-NEs. The obtained NEs were ~90 nm in particle size with an EE of 99.31%. BCL-NEs significantly enhanced the oral bioavailability of BCL, up to 524.7% and 242.1% relative to the suspensions and conventional emulsions, respectively. BCL-NEs exhibited excellent intestinal permeability and transcellular transport ability. The cytotoxicity of BCL-NEs was documented to be low and acceptable for oral purpose. Our findings suggest that such novel NEs and preparative process provide a promising alternative to current formulation technologies and suitable for oral delivery of drugs with bioavailability issues.

No MeSH data available.


Related in: MedlinePlus