Limits...
Assessing the usability by clinicians of VISION: A hierarchical display of patient-collected physiological information to clinicians

View Article: PubMed Central - PubMed

ABSTRACT

Background: The inability of patients to accurately and completely recount their clinical status between clinic visits reduces the clinician’s ability to properly manage their patients. One way to improve this situation is to collect objective patient information while the patients are at home and display the collected multi-day clinical information in parallel on a single screen, highlighting threshold violations for each channel, and allowing the viewer to drill down to any analog signal on the same screen, while maintaining the overall physiological context of the patient. All this would be accomplished in a way that was easy for the clinician to view and use.

Methods: Patients used five mobile devices to collect six heart failure-related clinical variables: body weight, systolic and diastolic blood pressure, pulse rate, blood oxygen saturation, physical activity, and subjective input. Fourteen clinicians practicing in a heart failure clinic rated the display using the System Usability Scale that, for acceptability, had an expected mean of 68 (SD, 12.5). In addition, we calculated the Intraclass Correlation Coefficient of the clinician responses using a two-way, mixed effects model, ICC (3,1).

Results: We developed a single-screen temporal hierarchical display (VISION) that summarizes the patient’s home monitoring activities between clinic visits. The overall System Usability Scale score was 92 (95% CI, 87-97), p < 0.0001; the ICC was 0.89 (CI, 0.79-0.97), p < 0.0001.

Conclusion: Clinicians consistently found VISION to be highly usable. To our knowledge, this is the first single-screen, parallel variable, temporal hierarchical display of both continuous and discrete information acquired by patients at home between clinic visits that presents clinically significant information at the point of care in a manner that is usable by clinicians.

No MeSH data available.


Additional detail showing subjective question set (arrow 9), and discrete values for 1-s level data on vertical cursor (arrow 10)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5391572&req=5

Fig4: Additional detail showing subjective question set (arrow 9), and discrete values for 1-s level data on vertical cursor (arrow 10)

Mentions: VISION was organized so that information at the top of the display had lower temporal granularity and information near the bottom of the display had higher temporal granularity. Temporal granularity refers to the selection of a temporally appropriate time scale [29]. The screen displayed all the variables using three stacked temporal dimensions: 24-h in hours, 8-h in minutes, and 30-min in seconds (Fig. 3). The dimensions were dynamically linked so that clicking on one dimension displayed the dimensions below it. The arrows are shown in Figs. 3 and 4 are for illustrative purposes only.Fig. 3


Assessing the usability by clinicians of VISION: A hierarchical display of patient-collected physiological information to clinicians
Additional detail showing subjective question set (arrow 9), and discrete values for 1-s level data on vertical cursor (arrow 10)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5391572&req=5

Fig4: Additional detail showing subjective question set (arrow 9), and discrete values for 1-s level data on vertical cursor (arrow 10)
Mentions: VISION was organized so that information at the top of the display had lower temporal granularity and information near the bottom of the display had higher temporal granularity. Temporal granularity refers to the selection of a temporally appropriate time scale [29]. The screen displayed all the variables using three stacked temporal dimensions: 24-h in hours, 8-h in minutes, and 30-min in seconds (Fig. 3). The dimensions were dynamically linked so that clicking on one dimension displayed the dimensions below it. The arrows are shown in Figs. 3 and 4 are for illustrative purposes only.Fig. 3

View Article: PubMed Central - PubMed

ABSTRACT

Background: The inability of patients to accurately and completely recount their clinical status between clinic visits reduces the clinician’s ability to properly manage their patients. One way to improve this situation is to collect objective patient information while the patients are at home and display the collected multi-day clinical information in parallel on a single screen, highlighting threshold violations for each channel, and allowing the viewer to drill down to any analog signal on the same screen, while maintaining the overall physiological context of the patient. All this would be accomplished in a way that was easy for the clinician to view and use.

Methods: Patients used five mobile devices to collect six heart failure-related clinical variables: body weight, systolic and diastolic blood pressure, pulse rate, blood oxygen saturation, physical activity, and subjective input. Fourteen clinicians practicing in a heart failure clinic rated the display using the System Usability Scale that, for acceptability, had an expected mean of 68 (SD, 12.5). In addition, we calculated the Intraclass Correlation Coefficient of the clinician responses using a two-way, mixed effects model, ICC (3,1).

Results: We developed a single-screen temporal hierarchical display (VISION) that summarizes the patient’s home monitoring activities between clinic visits. The overall System Usability Scale score was 92 (95% CI, 87-97), p < 0.0001; the ICC was 0.89 (CI, 0.79-0.97), p < 0.0001.

Conclusion: Clinicians consistently found VISION to be highly usable. To our knowledge, this is the first single-screen, parallel variable, temporal hierarchical display of both continuous and discrete information acquired by patients at home between clinic visits that presents clinically significant information at the point of care in a manner that is usable by clinicians.

No MeSH data available.