Limits...
Symbiosis limits establishment of legumes outside their native range at a global scale

View Article: PubMed Central - PubMed

ABSTRACT

Microbial symbiosis is integral to plant growth and reproduction, but its contribution to global patterns of plant distribution is unknown. Legumes (Fabaceae) are a diverse and widely distributed plant family largely dependent on symbiosis with nitrogen-fixing rhizobia, which are acquired from soil after germination. This dependency is predicted to limit establishment in new geographic areas, owing to a disruption of compatible host-symbiont associations. Here we compare non-native establishment patterns of symbiotic and non-symbiotic legumes across over 3,500 species, covering multiple independent gains and losses of rhizobial symbiosis. We find that symbiotic legume species have spread to fewer non-native regions compared to non-symbiotic legumes, providing strong support for the hypothesis that lack of suitable symbionts or environmental conditions required for effective nitrogen-fixation are driving these global introduction patterns. These results highlight the importance of mutualisms in predicting non-native species establishment and the potential impacts of microbial biogeography on global plant distributions.

No MeSH data available.


Global proportional distribution of symbiotic legume species.Regions are coloured according to the proportion of symbiotic legume species in (a) native and (b) non-native ranges. Lighter colours indicate higher proportions of non-symbiotic legume species. Non-symbiotic legume species tend to primarily occur near the equator in their native range. Non-symbiotic legume species currently account for a higher proportion of species within introduced ranges compared to their proportion within native ranges. The figure shows that the increased spread of non-symbiotic legumes spans multiple continents and islands across the world. Grey areas indicate terrestrial ecoregions where legumes are not known to occur43. Regions are defined using the Taxonomic Distribution Working Group system39.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5385628&req=5

f3: Global proportional distribution of symbiotic legume species.Regions are coloured according to the proportion of symbiotic legume species in (a) native and (b) non-native ranges. Lighter colours indicate higher proportions of non-symbiotic legume species. Non-symbiotic legume species tend to primarily occur near the equator in their native range. Non-symbiotic legume species currently account for a higher proportion of species within introduced ranges compared to their proportion within native ranges. The figure shows that the increased spread of non-symbiotic legumes spans multiple continents and islands across the world. Grey areas indicate terrestrial ecoregions where legumes are not known to occur43. Regions are defined using the Taxonomic Distribution Working Group system39.

Mentions: For species occurring in more than one non-native region we also measured the degree of geographic dispersion between non-native regions and found no difference in the degree of geographic dispersion between either legume group (Supplementary Table 1), showing that introduced symbiotic legumes do not have more or less geographically widespread non-native regions than non-symbiotic legumes. Together, our analyses show that the contrast in introduction success between symbiotic and non-symbiotic legumes was characterised by differences in the number of non-native regions. These results combined support the hypothesis that non-symbiotic legumes have a higher chance of establishing and subsequently spreading to a greater number of geographic areas (Fig. 3).


Symbiosis limits establishment of legumes outside their native range at a global scale
Global proportional distribution of symbiotic legume species.Regions are coloured according to the proportion of symbiotic legume species in (a) native and (b) non-native ranges. Lighter colours indicate higher proportions of non-symbiotic legume species. Non-symbiotic legume species tend to primarily occur near the equator in their native range. Non-symbiotic legume species currently account for a higher proportion of species within introduced ranges compared to their proportion within native ranges. The figure shows that the increased spread of non-symbiotic legumes spans multiple continents and islands across the world. Grey areas indicate terrestrial ecoregions where legumes are not known to occur43. Regions are defined using the Taxonomic Distribution Working Group system39.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5385628&req=5

f3: Global proportional distribution of symbiotic legume species.Regions are coloured according to the proportion of symbiotic legume species in (a) native and (b) non-native ranges. Lighter colours indicate higher proportions of non-symbiotic legume species. Non-symbiotic legume species tend to primarily occur near the equator in their native range. Non-symbiotic legume species currently account for a higher proportion of species within introduced ranges compared to their proportion within native ranges. The figure shows that the increased spread of non-symbiotic legumes spans multiple continents and islands across the world. Grey areas indicate terrestrial ecoregions where legumes are not known to occur43. Regions are defined using the Taxonomic Distribution Working Group system39.
Mentions: For species occurring in more than one non-native region we also measured the degree of geographic dispersion between non-native regions and found no difference in the degree of geographic dispersion between either legume group (Supplementary Table 1), showing that introduced symbiotic legumes do not have more or less geographically widespread non-native regions than non-symbiotic legumes. Together, our analyses show that the contrast in introduction success between symbiotic and non-symbiotic legumes was characterised by differences in the number of non-native regions. These results combined support the hypothesis that non-symbiotic legumes have a higher chance of establishing and subsequently spreading to a greater number of geographic areas (Fig. 3).

View Article: PubMed Central - PubMed

ABSTRACT

Microbial symbiosis is integral to plant growth and reproduction, but its contribution to global patterns of plant distribution is unknown. Legumes (Fabaceae) are a diverse and widely distributed plant family largely dependent on symbiosis with nitrogen-fixing rhizobia, which are acquired from soil after germination. This dependency is predicted to limit establishment in new geographic areas, owing to a disruption of compatible host-symbiont associations. Here we compare non-native establishment patterns of symbiotic and non-symbiotic legumes across over 3,500 species, covering multiple independent gains and losses of rhizobial symbiosis. We find that symbiotic legume species have spread to fewer non-native regions compared to non-symbiotic legumes, providing strong support for the hypothesis that lack of suitable symbionts or environmental conditions required for effective nitrogen-fixation are driving these global introduction patterns. These results highlight the importance of mutualisms in predicting non-native species establishment and the potential impacts of microbial biogeography on global plant distributions.

No MeSH data available.