Limits...
The Impact of Early Visual Deprivation on Spatial Hearing: A Comparison between Totally and Partially Visually Deprived Children

View Article: PubMed Central - PubMed

ABSTRACT

The specific role of early visual deprivation on spatial hearing is still unclear, mainly due to the difficulty of comparing similar spatial skills at different ages and to the difficulty in recruiting young blind children from birth. In this study, the effects of early visual deprivation on the development of auditory spatial localization have been assessed in a group of seven 3–5 years old children with congenital blindness (n = 2; light perception or no perception of light) or low vision (n = 5; visual acuity range 1.1–1.7 LogMAR), with the main aim to understand if visual experience is fundamental to the development of specific spatial skills. Our study led to three main findings: firstly, totally blind children performed overall more poorly compared sighted and low vision children in all the spatial tasks performed; secondly, low vision children performed equally or better than sighted children in the same auditory spatial tasks; thirdly, higher residual levels of visual acuity are positively correlated with better spatial performance in the dynamic condition of the auditory localization task indicating that the more residual vision the better spatial performance. These results suggest that early visual experience has an important role in the development of spatial cognition, even when the visual input during the critical period of visual calibration is partially degraded like in the case of low vision children. Overall these results shed light on the importance of early assessment of spatial impairments in visually impaired children and early intervention to prevent the risk of isolation and social exclusion.

No MeSH data available.


Related in: MedlinePlus

Comparison between Static Sound Localization and Dynamic Sound Localization Tasks. The figure shows the performance of blind and low vision children compared to sighted children for the Static Sound Localization Task (black bars) and the Dynamic Sound Localization Task (red bars). While for both tasks blind children performed significantly worse than sighted children (∗p < 0.05), low vision children performed better than sighted children only for the Dynamic Sound Localization Task (∗∗p < 0.01).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5385626&req=5

Figure 2: Comparison between Static Sound Localization and Dynamic Sound Localization Tasks. The figure shows the performance of blind and low vision children compared to sighted children for the Static Sound Localization Task (black bars) and the Dynamic Sound Localization Task (red bars). While for both tasks blind children performed significantly worse than sighted children (∗p < 0.05), low vision children performed better than sighted children only for the Dynamic Sound Localization Task (∗∗p < 0.01).

Mentions: The average results of blind and low vision children are presented in Figure 2 for the Static Sound Localization Task (black bars) and the Dynamic Sound Localization Task (red bars). As a measure of spatial accuracy, we plotted the localization error calculated as the average length of the vector that connected the correct and the perceived position of the loudspeaker (mm) for all trials and for each group.


The Impact of Early Visual Deprivation on Spatial Hearing: A Comparison between Totally and Partially Visually Deprived Children
Comparison between Static Sound Localization and Dynamic Sound Localization Tasks. The figure shows the performance of blind and low vision children compared to sighted children for the Static Sound Localization Task (black bars) and the Dynamic Sound Localization Task (red bars). While for both tasks blind children performed significantly worse than sighted children (∗p < 0.05), low vision children performed better than sighted children only for the Dynamic Sound Localization Task (∗∗p < 0.01).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5385626&req=5

Figure 2: Comparison between Static Sound Localization and Dynamic Sound Localization Tasks. The figure shows the performance of blind and low vision children compared to sighted children for the Static Sound Localization Task (black bars) and the Dynamic Sound Localization Task (red bars). While for both tasks blind children performed significantly worse than sighted children (∗p < 0.05), low vision children performed better than sighted children only for the Dynamic Sound Localization Task (∗∗p < 0.01).
Mentions: The average results of blind and low vision children are presented in Figure 2 for the Static Sound Localization Task (black bars) and the Dynamic Sound Localization Task (red bars). As a measure of spatial accuracy, we plotted the localization error calculated as the average length of the vector that connected the correct and the perceived position of the loudspeaker (mm) for all trials and for each group.

View Article: PubMed Central - PubMed

ABSTRACT

The specific role of early visual deprivation on spatial hearing is still unclear, mainly due to the difficulty of comparing similar spatial skills at different ages and to the difficulty in recruiting young blind children from birth. In this study, the effects of early visual deprivation on the development of auditory spatial localization have been assessed in a group of seven 3&ndash;5 years old children with congenital blindness (n = 2; light perception or no perception of light) or low vision (n = 5; visual acuity range 1.1&ndash;1.7 LogMAR), with the main aim to understand if visual experience is fundamental to the development of specific spatial skills. Our study led to three main findings: firstly, totally blind children performed overall more poorly compared sighted and low vision children in all the spatial tasks performed; secondly, low vision children performed equally or better than sighted children in the same auditory spatial tasks; thirdly, higher residual levels of visual acuity are positively correlated with better spatial performance in the dynamic condition of the auditory localization task indicating that the more residual vision the better spatial performance. These results suggest that early visual experience has an important role in the development of spatial cognition, even when the visual input during the critical period of visual calibration is partially degraded like in the case of low vision children. Overall these results shed light on the importance of early assessment of spatial impairments in visually impaired children and early intervention to prevent the risk of isolation and social exclusion.

No MeSH data available.


Related in: MedlinePlus