Limits...
Is a diet low in greenhouse gas emissions a nutritious diet? – Analyses of self-selected diets in the LifeGene study

View Article: PubMed Central - PubMed

ABSTRACT

Background: Climate change is an urgent global issue and the food sector is a major contributor to greenhouse gas emissions (GHGE). Here we study if a diet low in GHGE could be a nutritious diet compared to the Nordic Nutrition Recommendations (NNR).

Methods: The environmental impact of foods from Life Cycle Assessment (LCA) data was linked to a food frequency questionnaire (FFQ) filled out by 5,364 participants in the Swedish LifeGene study. Thereafter, we calculated the daily emission of CO2 equivalents (CO2e) as well as the intake of selected nutrients associated with vegetables, fruits, meat and dairy products. The CO2e was divided into quartiles were quartile 1 corresponds to a diet generating the lowest CO2e, and quartile 4 corresponds to a diet with the highest CO2e.

Results: The overall diet-related emission was 4.7 kg CO2e/day and person, corresponding to 1.7 ton CO2e/year. In general, there were only small differences in nutrient intake between groups of varying levels of CO2e, regardless if the intake was analyzed as absolute intake, energy percent or as nutrient density. Moreover, adherence to NNR was high for the group with the lowest CO2e, except for saturated fat where the intake was higher than recommended for all CO2e groups. On the other hand, only the group with the lowest CO2e fulfilled recommended intake of fiber. However, none of the CO2e groups reached the recommended intake of folate and vitamin D.

Conclusions: Here we show that a self-selected diet low in CO2e provides comparable intake of nutrients as a diet high in in CO2e.

Electronic supplementary material: The online version of this article (doi:10.1186/s13690-017-0185-9) contains supplementary material, which is available to authorized users.

No MeSH data available.


Percentage of energy coming from macronutrients by quartiles of increasing levels of greenhouse gas emissions in the LifeGene study, 2009–10, Sweden (n = 5,364). The percentage of energy coming from fat, protein, carbohydrates, saturated fat, monounsaturated fat, and polyunsaturated fat, respectively, by quartiles of increasing levels of energy adjusted diet-related greenhouse gas emissions
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5385588&req=5

Fig2: Percentage of energy coming from macronutrients by quartiles of increasing levels of greenhouse gas emissions in the LifeGene study, 2009–10, Sweden (n = 5,364). The percentage of energy coming from fat, protein, carbohydrates, saturated fat, monounsaturated fat, and polyunsaturated fat, respectively, by quartiles of increasing levels of energy adjusted diet-related greenhouse gas emissions

Mentions: Participants with energy intake less than 3,300 or more than 21,000 kJ were excluded (n = 212). The purpose of the cut-off is to exclude participants with implausibly high or low total calorie intake, thus, improving the quality of the data that is being analyzed. Quartiles were used to split CO2e into four groups, both for crude values and energy adjusted values using the residual method [25] and quartile 1 corresponds to the group with the lowest CO2e, and quartile 4 to the group with the highest CO2e. Median and interquartile range (25th–75th percentile) of the nutrient intake divided by CO2e groups was calculated and the difference tested with Kruskal-Wallis test. To show the distribution within the energy adjusted CO2e groups, the nutrients are presented as boxplots in Figs. 2 and 3. The notch corresponds to the median, the edges of the box correspond to the first quartile (q1) and third quartile (q3). The vertical lines at the end of the dotted line are the lower and upper adjacent value (LAV and UAV) here calculated as follows: LAV = smallest value which is ≥ q1−4 IOR; UAV = largest value which is ≤ q3 + 4 IOR, where IQR is the interquartile range (IOR = q3−q1). Due to large sample size we chosen 4 instead of commonly used 1.5 to highlight extreme observations to make more distinguishable graphs. The extreme observations, values below the LAV or above UAV, are marked as circles. All analyses were performed in the statistical software STATA version 13.1. Significance level was set to α = 0.05.


Is a diet low in greenhouse gas emissions a nutritious diet? – Analyses of self-selected diets in the LifeGene study
Percentage of energy coming from macronutrients by quartiles of increasing levels of greenhouse gas emissions in the LifeGene study, 2009–10, Sweden (n = 5,364). The percentage of energy coming from fat, protein, carbohydrates, saturated fat, monounsaturated fat, and polyunsaturated fat, respectively, by quartiles of increasing levels of energy adjusted diet-related greenhouse gas emissions
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5385588&req=5

Fig2: Percentage of energy coming from macronutrients by quartiles of increasing levels of greenhouse gas emissions in the LifeGene study, 2009–10, Sweden (n = 5,364). The percentage of energy coming from fat, protein, carbohydrates, saturated fat, monounsaturated fat, and polyunsaturated fat, respectively, by quartiles of increasing levels of energy adjusted diet-related greenhouse gas emissions
Mentions: Participants with energy intake less than 3,300 or more than 21,000 kJ were excluded (n = 212). The purpose of the cut-off is to exclude participants with implausibly high or low total calorie intake, thus, improving the quality of the data that is being analyzed. Quartiles were used to split CO2e into four groups, both for crude values and energy adjusted values using the residual method [25] and quartile 1 corresponds to the group with the lowest CO2e, and quartile 4 to the group with the highest CO2e. Median and interquartile range (25th–75th percentile) of the nutrient intake divided by CO2e groups was calculated and the difference tested with Kruskal-Wallis test. To show the distribution within the energy adjusted CO2e groups, the nutrients are presented as boxplots in Figs. 2 and 3. The notch corresponds to the median, the edges of the box correspond to the first quartile (q1) and third quartile (q3). The vertical lines at the end of the dotted line are the lower and upper adjacent value (LAV and UAV) here calculated as follows: LAV = smallest value which is ≥ q1−4 IOR; UAV = largest value which is ≤ q3 + 4 IOR, where IQR is the interquartile range (IOR = q3−q1). Due to large sample size we chosen 4 instead of commonly used 1.5 to highlight extreme observations to make more distinguishable graphs. The extreme observations, values below the LAV or above UAV, are marked as circles. All analyses were performed in the statistical software STATA version 13.1. Significance level was set to α = 0.05.

View Article: PubMed Central - PubMed

ABSTRACT

Background: Climate change is an urgent global issue and the food sector is a major contributor to greenhouse gas emissions (GHGE). Here we study if a diet low in GHGE could be a nutritious diet compared to the Nordic Nutrition Recommendations (NNR).

Methods: The environmental impact of foods from Life Cycle Assessment (LCA) data was linked to a food frequency questionnaire (FFQ) filled out by 5,364 participants in the Swedish LifeGene study. Thereafter, we calculated the daily emission of CO2 equivalents (CO2e) as well as the intake of selected nutrients associated with vegetables, fruits, meat and dairy products. The CO2e was divided into quartiles were quartile 1 corresponds to a diet generating the lowest CO2e, and quartile 4 corresponds to a diet with the highest CO2e.

Results: The overall diet-related emission was 4.7 kg CO2e/day and person, corresponding to 1.7 ton CO2e/year. In general, there were only small differences in nutrient intake between groups of varying levels of CO2e, regardless if the intake was analyzed as absolute intake, energy percent or as nutrient density. Moreover, adherence to NNR was high for the group with the lowest CO2e, except for saturated fat where the intake was higher than recommended for all CO2e groups. On the other hand, only the group with the lowest CO2e fulfilled recommended intake of fiber. However, none of the CO2e groups reached the recommended intake of folate and vitamin D.

Conclusions: Here we show that a self-selected diet low in CO2e provides comparable intake of nutrients as a diet high in in CO2e.

Electronic supplementary material: The online version of this article (doi:10.1186/s13690-017-0185-9) contains supplementary material, which is available to authorized users.

No MeSH data available.