Limits...
Multi-scale comparison of the fine particle removal capacity of urban forests and wetlands

View Article: PubMed Central - PubMed

ABSTRACT

As fine particle (FP) pollution is harmful to humans, previous studies have focused on the mechanisms of FP removal by forests. The current study aims to compare the FP removal capacities of urban forests and wetlands on the leaf, canopy, and landscape scales. Water washing and scanning electron microscopy are used to calculate particle accumulation on leaves, and models are used to estimate vegetation collection, sedimentation, and dry deposition. Results showed that, on the leaf scale, forest species are able to accumulate more FP on their leaf surface than aquatic species in wetlands. On the canopy scale, horizontal vegetation collection is the major process involved in FP removal, and the contribution of vertical sedimentation/emission can be ignored. Coniferous tree species also showed stronger FP collection ability than broadleaf species. In the landscape scale, deposition on the forest occurs to a greater extent than that on wetlands, and dry deposition is the major process of FP removal on rain-free days. In conclusion, when planning an urban green system, planting an urban forest should be the first option for FP mitigation.

No MeSH data available.


Location of experiment sites (Diagram created using ArcGIS 9.3).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5385566&req=5

f1: Location of experiment sites (Diagram created using ArcGIS 9.3).

Mentions: As shown in Fig. 1, the experimental sites are located in an artificial wetland, an artificial forest, and a roadway in Beijing Olympic Forest Park, which is situated at the north end of the central axis of Beijing and crossed by the Beijing 5th Ring Road. Both the wetland and forest sites are far away from the Ring Road to avoid the influence of traffic follow. The forest site is dominated by Populus × canadensis with some Pinus tabulaeformis, Morus alba, Quercus variabilis, Sophora japonica, and Gleditsia sinensis, all of which are commonly used species in urban planning in north China.


Multi-scale comparison of the fine particle removal capacity of urban forests and wetlands
Location of experiment sites (Diagram created using ArcGIS 9.3).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5385566&req=5

f1: Location of experiment sites (Diagram created using ArcGIS 9.3).
Mentions: As shown in Fig. 1, the experimental sites are located in an artificial wetland, an artificial forest, and a roadway in Beijing Olympic Forest Park, which is situated at the north end of the central axis of Beijing and crossed by the Beijing 5th Ring Road. Both the wetland and forest sites are far away from the Ring Road to avoid the influence of traffic follow. The forest site is dominated by Populus × canadensis with some Pinus tabulaeformis, Morus alba, Quercus variabilis, Sophora japonica, and Gleditsia sinensis, all of which are commonly used species in urban planning in north China.

View Article: PubMed Central - PubMed

ABSTRACT

As fine particle (FP) pollution is harmful to humans, previous studies have focused on the mechanisms of FP removal by forests. The current study aims to compare the FP removal capacities of urban forests and wetlands on the leaf, canopy, and landscape scales. Water washing and scanning electron microscopy are used to calculate particle accumulation on leaves, and models are used to estimate vegetation collection, sedimentation, and dry deposition. Results showed that, on the leaf scale, forest species are able to accumulate more FP on their leaf surface than aquatic species in wetlands. On the canopy scale, horizontal vegetation collection is the major process involved in FP removal, and the contribution of vertical sedimentation/emission can be ignored. Coniferous tree species also showed stronger FP collection ability than broadleaf species. In the landscape scale, deposition on the forest occurs to a greater extent than that on wetlands, and dry deposition is the major process of FP removal on rain-free days. In conclusion, when planning an urban green system, planting an urban forest should be the first option for FP mitigation.

No MeSH data available.