Limits...
Roles of Multiple Globus Pallidus Territories of Monkeys and Humans in Motivation, Cognition and Action: An Anatomical, Physiological and Pathophysiological Review

View Article: PubMed Central - PubMed

ABSTRACT

The globus pallidus (GP) communicates with widespread cortical areas that support various functions, including motivation, cognition and action. Anatomical tract-tracing studies revealed that the anteroventral GP communicates with the medial prefrontal and orbitofrontal cortices, which are involved in motivational control; the anterodorsal GP communicates with the lateral prefrontal cortex, which is involved in cognitive control; and the posterior GP communicates with the frontal motor cortex, which is involved in action control. This organization suggests that distinct subdivisions within the GP play specific roles. Neurophysiological studies examining GP neurons in monkeys during behavior revealed that the types of information coding performed within these subdivisions differ greatly. The anteroventral GP is characterized by activities related to motivation, such as reward seeking and aversive avoidance; the anterodorsal GP is characterized by activity that reflects cognition, such as goal decision and action selection; and the posterior GP is characterized by activity associated with action preparation and execution. Pathophysiological studies have shown that GABA-related substances or GP lesions result in abnormal activity in the GP, which causes site-specific behavioral and motor symptoms. The present review article discusses the anatomical organization, physiology and pathophysiology of the three major GP territories in nonhuman primates and humans.

No MeSH data available.


Related in: MedlinePlus

Schematic diagrams of cortico- basal ganglia (BG) anatomical loops with functional territories. The motor (yellow), associative (green) and limbic (blue) territories are represented in circuits between the frontal cortical areas and the BG.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5385466&req=5

Figure 1: Schematic diagrams of cortico- basal ganglia (BG) anatomical loops with functional territories. The motor (yellow), associative (green) and limbic (blue) territories are represented in circuits between the frontal cortical areas and the BG.

Mentions: Anatomical studies have provided major contributions to the present understanding of the neuronal circuits that connect the frontal cortical areas and the BG (Figure 1). In particular, the transneuronal transport of viruses such as herpes simplex virus type 1(HSV-1) and the rabies virus (RV) has revealed connections across synapses (Kelly and Strick, 2000; Dum and Strick, 2013) because these viruses infect neurons and are then transported across synapses in a time-dependent manner. More specifically, the injection of neurotropic viruses into cortical areas has illustrated that specific portions of the GPi and GPe send either disynaptic (from the GPi) or trisynaptic (from the GPe) projections to cortical areas.


Roles of Multiple Globus Pallidus Territories of Monkeys and Humans in Motivation, Cognition and Action: An Anatomical, Physiological and Pathophysiological Review
Schematic diagrams of cortico- basal ganglia (BG) anatomical loops with functional territories. The motor (yellow), associative (green) and limbic (blue) territories are represented in circuits between the frontal cortical areas and the BG.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5385466&req=5

Figure 1: Schematic diagrams of cortico- basal ganglia (BG) anatomical loops with functional territories. The motor (yellow), associative (green) and limbic (blue) territories are represented in circuits between the frontal cortical areas and the BG.
Mentions: Anatomical studies have provided major contributions to the present understanding of the neuronal circuits that connect the frontal cortical areas and the BG (Figure 1). In particular, the transneuronal transport of viruses such as herpes simplex virus type 1(HSV-1) and the rabies virus (RV) has revealed connections across synapses (Kelly and Strick, 2000; Dum and Strick, 2013) because these viruses infect neurons and are then transported across synapses in a time-dependent manner. More specifically, the injection of neurotropic viruses into cortical areas has illustrated that specific portions of the GPi and GPe send either disynaptic (from the GPi) or trisynaptic (from the GPe) projections to cortical areas.

View Article: PubMed Central - PubMed

ABSTRACT

The globus pallidus (GP) communicates with widespread cortical areas that support various functions, including motivation, cognition and action. Anatomical tract-tracing studies revealed that the anteroventral GP communicates with the medial prefrontal and orbitofrontal cortices, which are involved in motivational control; the anterodorsal GP communicates with the lateral prefrontal cortex, which is involved in cognitive control; and the posterior GP communicates with the frontal motor cortex, which is involved in action control. This organization suggests that distinct subdivisions within the GP play specific roles. Neurophysiological studies examining GP neurons in monkeys during behavior revealed that the types of information coding performed within these subdivisions differ greatly. The anteroventral GP is characterized by activities related to motivation, such as reward seeking and aversive avoidance; the anterodorsal GP is characterized by activity that reflects cognition, such as goal decision and action selection; and the posterior GP is characterized by activity associated with action preparation and execution. Pathophysiological studies have shown that GABA-related substances or GP lesions result in abnormal activity in the GP, which causes site-specific behavioral and motor symptoms. The present review article discusses the anatomical organization, physiology and pathophysiology of the three major GP territories in nonhuman primates and humans.

No MeSH data available.


Related in: MedlinePlus