Limits...
Identification of neovascularization by contrast – enhanced ultrasound to detect unstable carotid stenosis

View Article: PubMed Central - PubMed

ABSTRACT

Background: Plaque neovascularization accompanies local inflammation and critically contributes to plaque instability. Correct identification of intraplaque neovascularization by contrast–enhanced ultrasound (CEUS) may provide an additional risk marker in carotid stenosis. This pilot study investigates the correlation between histological evaluation of carotid plaque specimens and pre-surgery CEUS to identify neovascularization.

Methods: 17 patients with high-grade internal carotid artery (ICA) stenosis were studied. CEUS was performed in all patients shortly before carotid endarterectomy. Neovascularization, infiltration of T cells and macrophages along with intraplaque hemorrhage were studied in excised plaques by immunohistochemistry. Ultrasound-based four-level and two-level classification systems for neovascularization were used. CEUS findings were compared with histological findings.

Results: Scores on the CEUS-based four-level and two-level classifications were robustly correlated with the density of intraplaque vessels (r = 0.635, p = 0.006 and r = 0.578, p = 0.015, respectively). Histological evaluation of regions with strong and prolonged intraplaque enhancement typically showed strong intraplaque neovascularization in conjunction with acute intraplaque hemorrhage. Moreover, higher grades of intraplaque neovascularization as determined by ultrasound were associated with a higher percentage of macrophage-rich areas.

Conclusion: CEUS is a technique well suited to gauge the degree of neovascularization of carotid plaques. Future research will have to define the reliability and validity of CEUS in everyday clinical practice. Further, our study suggests that CEUS may also be useful to pick up features of vulnerable plaques such as acute intraplaque hemorrhages.

No MeSH data available.


Related in: MedlinePlus

Massive infiltration of inflammatory cells in area of intraplaque neovascularization.(A) CD31 antibody staining reveals intraplaque neovascularization. Black arrows mark individual neovessels. The dotted lines delineate an area within the plaque characterized by a high density of blue-stained nuclei suggesting strong infiltration of inflammatory cells in close proximity to the area of neovascularization. (B) Higher magnification of boxed area shown in A. Yellow arrows mark individual inflammatory cells. Cell shape and nuclear geometry suggest the presence of inflammatory cells (predominantly macrophages and T cells).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5384678&req=5

pone.0175331.g006: Massive infiltration of inflammatory cells in area of intraplaque neovascularization.(A) CD31 antibody staining reveals intraplaque neovascularization. Black arrows mark individual neovessels. The dotted lines delineate an area within the plaque characterized by a high density of blue-stained nuclei suggesting strong infiltration of inflammatory cells in close proximity to the area of neovascularization. (B) Higher magnification of boxed area shown in A. Yellow arrows mark individual inflammatory cells. Cell shape and nuclear geometry suggest the presence of inflammatory cells (predominantly macrophages and T cells).

Mentions: An example of massive infiltration of inflammatory cells in the area of neovascularization is given in Fig 6.


Identification of neovascularization by contrast – enhanced ultrasound to detect unstable carotid stenosis
Massive infiltration of inflammatory cells in area of intraplaque neovascularization.(A) CD31 antibody staining reveals intraplaque neovascularization. Black arrows mark individual neovessels. The dotted lines delineate an area within the plaque characterized by a high density of blue-stained nuclei suggesting strong infiltration of inflammatory cells in close proximity to the area of neovascularization. (B) Higher magnification of boxed area shown in A. Yellow arrows mark individual inflammatory cells. Cell shape and nuclear geometry suggest the presence of inflammatory cells (predominantly macrophages and T cells).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5384678&req=5

pone.0175331.g006: Massive infiltration of inflammatory cells in area of intraplaque neovascularization.(A) CD31 antibody staining reveals intraplaque neovascularization. Black arrows mark individual neovessels. The dotted lines delineate an area within the plaque characterized by a high density of blue-stained nuclei suggesting strong infiltration of inflammatory cells in close proximity to the area of neovascularization. (B) Higher magnification of boxed area shown in A. Yellow arrows mark individual inflammatory cells. Cell shape and nuclear geometry suggest the presence of inflammatory cells (predominantly macrophages and T cells).
Mentions: An example of massive infiltration of inflammatory cells in the area of neovascularization is given in Fig 6.

View Article: PubMed Central - PubMed

ABSTRACT

Background: Plaque neovascularization accompanies local inflammation and critically contributes to plaque instability. Correct identification of intraplaque neovascularization by contrast–enhanced ultrasound (CEUS) may provide an additional risk marker in carotid stenosis. This pilot study investigates the correlation between histological evaluation of carotid plaque specimens and pre-surgery CEUS to identify neovascularization.

Methods: 17 patients with high-grade internal carotid artery (ICA) stenosis were studied. CEUS was performed in all patients shortly before carotid endarterectomy. Neovascularization, infiltration of T cells and macrophages along with intraplaque hemorrhage were studied in excised plaques by immunohistochemistry. Ultrasound-based four-level and two-level classification systems for neovascularization were used. CEUS findings were compared with histological findings.

Results: Scores on the CEUS-based four-level and two-level classifications were robustly correlated with the density of intraplaque vessels (r = 0.635, p = 0.006 and r = 0.578, p = 0.015, respectively). Histological evaluation of regions with strong and prolonged intraplaque enhancement typically showed strong intraplaque neovascularization in conjunction with acute intraplaque hemorrhage. Moreover, higher grades of intraplaque neovascularization as determined by ultrasound were associated with a higher percentage of macrophage-rich areas.

Conclusion: CEUS is a technique well suited to gauge the degree of neovascularization of carotid plaques. Future research will have to define the reliability and validity of CEUS in everyday clinical practice. Further, our study suggests that CEUS may also be useful to pick up features of vulnerable plaques such as acute intraplaque hemorrhages.

No MeSH data available.


Related in: MedlinePlus