Limits...
Two types of peak emotional responses to music: The psychophysiology of chills and tears

View Article: PubMed Central - PubMed

ABSTRACT

People sometimes experience a strong emotional response to artworks. Previous studies have demonstrated that the peak emotional experience of chills (goose bumps or shivers) when listening to music involves psychophysiological arousal and a rewarding effect. However, many aspects of peak emotion are still not understood. The current research takes a new perspective of peak emotional response of tears (weeping, lump in the throat). A psychophysiological experiment showed that self-reported chills increased electrodermal activity and subjective arousal whereas tears produced slow respiration during heartbeat acceleration, although both chills and tears induced pleasure and deep breathing. A song that induced chills was perceived as being both happy and sad whereas a song that induced tears was perceived as sad. A tear-eliciting song was perceived as calmer than a chill-eliciting song. These results show that tears involve pleasure from sadness and that they are psychophysiologically calming; thus, psychophysiological responses permit the distinction between chills and tears. Because tears may have a cathartic effect, the functional significance of chills and tears seems to be different. We believe that the distinction of two types of peak emotions is theoretically relevant and further study of tears would contribute to more understanding of human peak emotional response.

No MeSH data available.


Related in: MedlinePlus

Mean emotional ratings after listening to self-selected songs and experimenter-selected songs for each peak emotion group (chills and tears).Error bars represent standard error of the mean. Note. Self = self-selected song, Experimenter = experimenter-selected song.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5384201&req=5

f2: Mean emotional ratings after listening to self-selected songs and experimenter-selected songs for each peak emotion group (chills and tears).Error bars represent standard error of the mean. Note. Self = self-selected song, Experimenter = experimenter-selected song.

Mentions: Figure 2 shows the emotional ratings of valence, arousal, happiness, sadness, calm, and fear in response to self-selected songs and experimenter-selected songs separately for the chills and tears groups. The results of the two-way ANOVAs and one-sample t-test are summarised in Table 4. As shown in Table 4 (left), the two-way ANOVAs revealed a main effect of song condition on valence, arousal, happiness, sadness, and fear. All of the effects showed that the ratings were higher for self-selected songs than for experimenter-selected songs in both groups. The main effect of group emerged on arousal, sadness, and calm. This effect indicated that the chills group was more aroused than the tears group regardless of the song condition whereas the tears group showed more sadness and calm than the chills group regardless of song condition. As the group × song interaction was significant for happiness and sadness, follow-up tests were conducted. For the happiness rating, a simple main effect indicated that self-selected songs were rated higher than experimenter-selected songs in the chills group (F(1, 262) = 20.11, p < 0.001). The chills group rated higher for happiness than the tears group for the self-selected songs (F(1, 262) = 7.95, p < 0.01). For the sadness rating, the simple main effect indicated that self-selected songs were rated higher than the experimenter-selected songs in both the chills group (F(1, 262) = 7.33, p < 0.01) and tears group (F(1, 262) = 30.61, p < 0.001). The tears group rated higher for sadness than the chills group for the self-selected songs (F(1, 262) = 16.21, p < 0.001). Furthermore, as shown in Table 4 (right), a one-sample t-test showed that valence was higher than neutral for both song conditions in both groups. Arousal was higher than neutral only for self-selected songs in the chills group. Table 5 shows a correlation matrix of subjective emotional reports as a function of group. Intensity, number, and duration of chills were positively correlated with valence, happy, and sad, whereas intensity, number, and duration of tears were positively correlated with valence and sad.


Two types of peak emotional responses to music: The psychophysiology of chills and tears
Mean emotional ratings after listening to self-selected songs and experimenter-selected songs for each peak emotion group (chills and tears).Error bars represent standard error of the mean. Note. Self = self-selected song, Experimenter = experimenter-selected song.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5384201&req=5

f2: Mean emotional ratings after listening to self-selected songs and experimenter-selected songs for each peak emotion group (chills and tears).Error bars represent standard error of the mean. Note. Self = self-selected song, Experimenter = experimenter-selected song.
Mentions: Figure 2 shows the emotional ratings of valence, arousal, happiness, sadness, calm, and fear in response to self-selected songs and experimenter-selected songs separately for the chills and tears groups. The results of the two-way ANOVAs and one-sample t-test are summarised in Table 4. As shown in Table 4 (left), the two-way ANOVAs revealed a main effect of song condition on valence, arousal, happiness, sadness, and fear. All of the effects showed that the ratings were higher for self-selected songs than for experimenter-selected songs in both groups. The main effect of group emerged on arousal, sadness, and calm. This effect indicated that the chills group was more aroused than the tears group regardless of the song condition whereas the tears group showed more sadness and calm than the chills group regardless of song condition. As the group × song interaction was significant for happiness and sadness, follow-up tests were conducted. For the happiness rating, a simple main effect indicated that self-selected songs were rated higher than experimenter-selected songs in the chills group (F(1, 262) = 20.11, p < 0.001). The chills group rated higher for happiness than the tears group for the self-selected songs (F(1, 262) = 7.95, p < 0.01). For the sadness rating, the simple main effect indicated that self-selected songs were rated higher than the experimenter-selected songs in both the chills group (F(1, 262) = 7.33, p < 0.01) and tears group (F(1, 262) = 30.61, p < 0.001). The tears group rated higher for sadness than the chills group for the self-selected songs (F(1, 262) = 16.21, p < 0.001). Furthermore, as shown in Table 4 (right), a one-sample t-test showed that valence was higher than neutral for both song conditions in both groups. Arousal was higher than neutral only for self-selected songs in the chills group. Table 5 shows a correlation matrix of subjective emotional reports as a function of group. Intensity, number, and duration of chills were positively correlated with valence, happy, and sad, whereas intensity, number, and duration of tears were positively correlated with valence and sad.

View Article: PubMed Central - PubMed

ABSTRACT

People sometimes experience a strong emotional response to artworks. Previous studies have demonstrated that the peak emotional experience of chills (goose bumps or shivers) when listening to music involves psychophysiological arousal and a rewarding effect. However, many aspects of peak emotion are still not understood. The current research takes a new perspective of peak emotional response of tears (weeping, lump in the throat). A psychophysiological experiment showed that self-reported chills increased electrodermal activity and subjective arousal whereas tears produced slow respiration during heartbeat acceleration, although both chills and tears induced pleasure and deep breathing. A song that induced chills was perceived as being both happy and sad whereas a song that induced tears was perceived as sad. A tear-eliciting song was perceived as calmer than a chill-eliciting song. These results show that tears involve pleasure from sadness and that they are psychophysiologically calming; thus, psychophysiological responses permit the distinction between chills and tears. Because tears may have a cathartic effect, the functional significance of chills and tears seems to be different. We believe that the distinction of two types of peak emotions is theoretically relevant and further study of tears would contribute to more understanding of human peak emotional response.

No MeSH data available.


Related in: MedlinePlus