Limits...
A randomized controlled study on the efficacy of a novel combination vaccine against enzootic pneumonia ( Mycoplasma hyopneumoniae ) and porcine Circovirus type 2 (PCV2) in the presence of strong maternally derived PCV2 immunity in pigs

View Article: PubMed Central - PubMed

ABSTRACT

Background: Mycoplasma hyopneumoniae (M. hyo) and Porcine Circovirus Type 2 (PCV2) are major pathogens that cause significant health problems in swine worldwide. Maternal derived immunity (MDI) has been suggested as a significant immediate defence factor for newborn piglets and may interfere with piglet’s vaccination-induced immunity. The study aimed to assess the efficacy of a novel combination vaccine (consisting of PCV2 subunits and inactivated M. hyo strain J), against PCV2 and M. hyo natural infection [Porcilis® PCV M Hyo (MSD Animal Health, Boxmeer, the Netherlands)], in the presence of strong maternally derived PCV2 immunity (antibody titre averaged 11.08 log2), under field conditions. The study was performed according to a controlled, randomized and blinded design in a Greek swine unit with Enzootic Pneumonia (EP) and subclinical PCV2 infection. In total, 600 healthy three-week-old suckling piglets were allocated randomly, either to treatment (vaccinated with the test product) or control group (injected with sterile buffered saline).

Results: Vaccination significantly reduced the severity of lung lesions at slaughter (lesions of cranio-ventral pulmonary consolidation) (P < 0.001). The overall mean lung lesion score (LLS) was 9.6 in the vaccinated group and 12.2 in controls. The level of PCV2 viraemia was significantly reduced in vaccinated pigs. Furthermore, 25 g higher average daily weight gain (ADWG) was observed during the finishing phase (P < 0.001) and 18 g greater ADWG overall (P < 0.001).

Conclusions: Results of LLS, PCV2 viremia and ADWG support the test product’s efficacy in the face of strong maternally derived PCV2 immunity.

No MeSH data available.


Study flow diagram
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5384188&req=5

Fig1: Study flow diagram

Mentions: Allocation sequence was concealed until administration of the test product or Unisol to the trial animals. Enrollment, administration of products to the trial animals and assignment to each group was performed by two members (namely, P. Tassis and E. Tzika) of the research group. Animals of both groups were commingled throughout the study and they received feed and water according to the farm’s schedule. Although the test and control product were visibly different (only relevant at the time of administration), the study was blinded. After vaccination, all farm and laboratory, or other personnel involved, either carrying out observations or measurements, could not identify the vaccination status of the pigs, as it was not possible to differentiate piglets by treatment without unblinding the ear tag number. A detailed study flow diagram is presented in Fig. 1. Furthermore, the sows from which study piglets originated had been routinely vaccinated against major pathogens (PCV-2, Aujeszky’s disease virus, PRRSv, porcine parvovirus, Erysipelothrix rhusiopathiae, atrophic rhinitis and Escherichia coli).Fig. 1


A randomized controlled study on the efficacy of a novel combination vaccine against enzootic pneumonia ( Mycoplasma hyopneumoniae ) and porcine Circovirus type 2 (PCV2) in the presence of strong maternally derived PCV2 immunity in pigs
Study flow diagram
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5384188&req=5

Fig1: Study flow diagram
Mentions: Allocation sequence was concealed until administration of the test product or Unisol to the trial animals. Enrollment, administration of products to the trial animals and assignment to each group was performed by two members (namely, P. Tassis and E. Tzika) of the research group. Animals of both groups were commingled throughout the study and they received feed and water according to the farm’s schedule. Although the test and control product were visibly different (only relevant at the time of administration), the study was blinded. After vaccination, all farm and laboratory, or other personnel involved, either carrying out observations or measurements, could not identify the vaccination status of the pigs, as it was not possible to differentiate piglets by treatment without unblinding the ear tag number. A detailed study flow diagram is presented in Fig. 1. Furthermore, the sows from which study piglets originated had been routinely vaccinated against major pathogens (PCV-2, Aujeszky’s disease virus, PRRSv, porcine parvovirus, Erysipelothrix rhusiopathiae, atrophic rhinitis and Escherichia coli).Fig. 1

View Article: PubMed Central - PubMed

ABSTRACT

Background: Mycoplasma hyopneumoniae (M. hyo) and Porcine Circovirus Type 2 (PCV2) are major pathogens that cause significant health problems in swine worldwide. Maternal derived immunity (MDI) has been suggested as a significant immediate defence factor for newborn piglets and may interfere with piglet’s vaccination-induced immunity. The study aimed to assess the efficacy of a novel combination vaccine (consisting of PCV2 subunits and inactivated M. hyo strain J), against PCV2 and M. hyo natural infection [Porcilis® PCV M Hyo (MSD Animal Health, Boxmeer, the Netherlands)], in the presence of strong maternally derived PCV2 immunity (antibody titre averaged 11.08 log2), under field conditions. The study was performed according to a controlled, randomized and blinded design in a Greek swine unit with Enzootic Pneumonia (EP) and subclinical PCV2 infection. In total, 600 healthy three-week-old suckling piglets were allocated randomly, either to treatment (vaccinated with the test product) or control group (injected with sterile buffered saline).

Results: Vaccination significantly reduced the severity of lung lesions at slaughter (lesions of cranio-ventral pulmonary consolidation) (P < 0.001). The overall mean lung lesion score (LLS) was 9.6 in the vaccinated group and 12.2 in controls. The level of PCV2 viraemia was significantly reduced in vaccinated pigs. Furthermore, 25 g higher average daily weight gain (ADWG) was observed during the finishing phase (P < 0.001) and 18 g greater ADWG overall (P < 0.001).

Conclusions: Results of LLS, PCV2 viremia and ADWG support the test product’s efficacy in the face of strong maternally derived PCV2 immunity.

No MeSH data available.