Limits...
Genome-wide identification and expression analysis of ClLAX , ClPIN and ClABCB genes families in Citrullus lanatus under various abiotic stresses and grafting

View Article: PubMed Central - PubMed

ABSTRACT

Background: Auxin plays an important role in regulating plant growth and development as well as in the response of plants to abiotic stresses. Auxin is transported by three kinds of major protein families, including the AUXIN RESISTANT 1/LIKE AUX1 (AUX⁄LAX) influx carriers, the PIN-FORMED (PIN) efflux carriers and the ATP binding cassette B/P-glycoprotein/Multidrug-resistance (ABCB/MDR/PGP) efflux/condition carriers. The biological function of several auxin transporter genes has been well characterized in Arabidopsis thaliana. However, their function in response to exogenous auxin and abiotic stresses in watermelon (Citrullus lanatus. L) remained unknown.

Results: Here, the latest updated watermelon genome was used to characterise the ClLAX, ClPIN and ClABCB family genes from watermelon. The genome-wide analysis of the ClLAX, ClPIN and ClABCB family genes, including chromosome localisation, gene structure, and phylogenic relationships, was carried out. Seven ClLAXs, 11 ClPINs and 15 ClABCBs were mapped on 10 watermelon chromosomes. The expression profiles of the ClLAX, ClPIN and ClABCB genes under exogenous indole-3-acetic acid and various abiotic stresses (salt, drought, and cold stresses) treatments were performed by quantitative real-time PCR (qRT-PCR). The transcriptional level of majority ClLAX, ClPIN and ClABCB genes were changed by abiotic stresses in both shoots and roots. We also analysed the expression levels of ClLAX, ClPIN and ClABCB genes in graft response.

Conclusion: Analysis of the expression patterns of ClLAX, ClPIN and ClABCB genes under salt, drought, cold treatment and grafting response helps us to understand the possible roles of auxin transporter genes in watermelon adaptation to environmental stresses.

Electronic supplementary material: The online version of this article (doi:10.1186/s12863-017-0500-z) contains supplementary material, which is available to authorized users.

No MeSH data available.


Expression profiles analysis of ClLAX, ClPIN and ClABCB family genes in response to drought stress. Expression levels of ClLAX, ClPIN and ClABCB genes were analysed by qRT-PCR in both shoot (a) and roots (b) of 3-week-old watermelon seedlings, which were treated with 20% (W/V) Polyethylene glycol (drought) for 24 h. The relative expression levels were normalized to a value of 1 in mock seedlings
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5384148&req=5

Fig6: Expression profiles analysis of ClLAX, ClPIN and ClABCB family genes in response to drought stress. Expression levels of ClLAX, ClPIN and ClABCB genes were analysed by qRT-PCR in both shoot (a) and roots (b) of 3-week-old watermelon seedlings, which were treated with 20% (W/V) Polyethylene glycol (drought) for 24 h. The relative expression levels were normalized to a value of 1 in mock seedlings

Mentions: Watermelon is one of the most drought and salinity sensitive cucurbit crops. Its yield is significantly influenced by these abiotic stresses such as drought, salinity and cold [52]. Many studies showed that auxin is involved in stress response, and a quantity of auxin transporter genes are associated with abiotic stress responses. To investigate whether ClLAX, ClPIN and ClABCB genes are involved in abiotic stress response, the expressions levels of 33 auxin transporter genes were investigated under salinity (NaCl), drought (PEG) and cold (4 °C) treatment using qRT-PCR (Figs. 5, 6 and 7). Untreated seedlings growing under normal condition were used as control.Fig. 5


Genome-wide identification and expression analysis of ClLAX , ClPIN and ClABCB genes families in Citrullus lanatus under various abiotic stresses and grafting
Expression profiles analysis of ClLAX, ClPIN and ClABCB family genes in response to drought stress. Expression levels of ClLAX, ClPIN and ClABCB genes were analysed by qRT-PCR in both shoot (a) and roots (b) of 3-week-old watermelon seedlings, which were treated with 20% (W/V) Polyethylene glycol (drought) for 24 h. The relative expression levels were normalized to a value of 1 in mock seedlings
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5384148&req=5

Fig6: Expression profiles analysis of ClLAX, ClPIN and ClABCB family genes in response to drought stress. Expression levels of ClLAX, ClPIN and ClABCB genes were analysed by qRT-PCR in both shoot (a) and roots (b) of 3-week-old watermelon seedlings, which were treated with 20% (W/V) Polyethylene glycol (drought) for 24 h. The relative expression levels were normalized to a value of 1 in mock seedlings
Mentions: Watermelon is one of the most drought and salinity sensitive cucurbit crops. Its yield is significantly influenced by these abiotic stresses such as drought, salinity and cold [52]. Many studies showed that auxin is involved in stress response, and a quantity of auxin transporter genes are associated with abiotic stress responses. To investigate whether ClLAX, ClPIN and ClABCB genes are involved in abiotic stress response, the expressions levels of 33 auxin transporter genes were investigated under salinity (NaCl), drought (PEG) and cold (4 °C) treatment using qRT-PCR (Figs. 5, 6 and 7). Untreated seedlings growing under normal condition were used as control.Fig. 5

View Article: PubMed Central - PubMed

ABSTRACT

Background: Auxin plays an important role in regulating plant growth and development as well as in the response of plants to abiotic stresses. Auxin is transported by three kinds of major protein families, including the AUXIN RESISTANT 1/LIKE AUX1 (AUX⁄LAX) influx carriers, the PIN-FORMED (PIN) efflux carriers and the ATP binding cassette B/P-glycoprotein/Multidrug-resistance (ABCB/MDR/PGP) efflux/condition carriers. The biological function of several auxin transporter genes has been well characterized in Arabidopsis thaliana. However, their function in response to exogenous auxin and abiotic stresses in watermelon (Citrullus lanatus. L) remained unknown.

Results: Here, the latest updated watermelon genome was used to characterise the ClLAX, ClPIN and ClABCB family genes from watermelon. The genome-wide analysis of the ClLAX, ClPIN and ClABCB family genes, including chromosome localisation, gene structure, and phylogenic relationships, was carried out. Seven ClLAXs, 11 ClPINs and 15 ClABCBs were mapped on 10 watermelon chromosomes. The expression profiles of the ClLAX, ClPIN and ClABCB genes under exogenous indole-3-acetic acid and various abiotic stresses (salt, drought, and cold stresses) treatments were performed by quantitative real-time PCR (qRT-PCR). The transcriptional level of majority ClLAX, ClPIN and ClABCB genes were changed by abiotic stresses in both shoots and roots. We also analysed the expression levels of ClLAX, ClPIN and ClABCB genes in graft response.

Conclusion: Analysis of the expression patterns of ClLAX, ClPIN and ClABCB genes under salt, drought, cold treatment and grafting response helps us to understand the possible roles of auxin transporter genes in watermelon adaptation to environmental stresses.

Electronic supplementary material: The online version of this article (doi:10.1186/s12863-017-0500-z) contains supplementary material, which is available to authorized users.

No MeSH data available.