Limits...
Surface-enhanced Raman spectroscopy of blood serum based on gold nanoparticles for the diagnosis of the oral squamous cell carcinoma

View Article: PubMed Central - PubMed

ABSTRACT

Background: Oral squamous cell carcinoma (OSCC) is becoming more common across the globe. The prognosis of OSCC is largely dependent on the early detection. But the routine oral cavity examination may delay the diagnosis because the early oral malignant lesions may be clinically indistinguishable from benign or inflammatory diseases. In this study, the new diagnostic method is developed by using the surface enhanced Raman spectroscopy (SERS) to detect the serum samples from the cancer patients.

Method: The blood serum samples were collected from the OSCC patients, MEC patients and the volunteers without OSCC or MEC. Gold nanoparticles(NPs) were then mixed in the serum samples to obtain the high quality SERS spectra. There were totally 135 spectra of OSCC, 90 spectra of mucoepidermoid carcinoma (MEC) and 145 spectra of normal control group, which were captured by SERS successfully. Compared with the normal control group, the Raman spectral differences exhibited in the spectra of OSCC and MEC groups, which were assigned to the nucleic acids, proteins and lipids. Based on these spectral differences and features, the algorithms of principal component analysis(PCA) and linear discriminant analysis (LDA) were employed to analyze and classify the Raman spectra of different groups.

Results: Compared with the normal groups, the major increased peaks in the OSCC and MEC groups were assigned to the molecular structures of the nucleic acids and proteins. And these different major peaks between the OSCC and MEC groups were assigned to the special molecular structures of the carotenoids and lipids. The PCA-LDA results demonstrated that OSCC could be discriminated successfully from the normal control groups with a sensitivity of 80.7% and a specificity of 84.1%. The process of the cross validation proved the results analyzed by PCA-LDA were reliable.

Conclusion: The gold NPs were appropriate substances to capture the high-quality SERS spectra of the OSCC, MEC and normal serum samples. The results of this study confirm that SERS combined PCA-LDA had a giant capability to detect and diagnosis OSCC through the serum sample successfully.

No MeSH data available.


The SEM image, absorption curve and Raman spectrum of the gold NPs. a The SEM image of the gold NPs. b The UV/visible absorption of the gold NPs and the gold NPs with serum. c SERS spectrum of serum, routine Raman spectrum of serum and background Raman spectrum of the gold NPs
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5384146&req=5

Fig1: The SEM image, absorption curve and Raman spectrum of the gold NPs. a The SEM image of the gold NPs. b The UV/visible absorption of the gold NPs and the gold NPs with serum. c SERS spectrum of serum, routine Raman spectrum of serum and background Raman spectrum of the gold NPs

Mentions: The SEM image of the pure gold NPs was shown in the Fig. 1a. The spherical NPs with a mean diameter of 55 nm were prepared in this method and had a maximal absorption at 530 nm. In the UV-visible absorption spectra shown in Fig. 1b, the pure NPs solution absorption band appeared in the around 530 nm wavelength region, and the band of the mixture of serum and NPs also remained in the same region but the intensity reduced due to the combination of gold NPs and biochemical substances in the serum. Compared with the regular Raman spectrum, the intensities of the SERS spectrum were enhanced enormously due to the gold NPs added in the serum (Fig. 1c).Fig. 1


Surface-enhanced Raman spectroscopy of blood serum based on gold nanoparticles for the diagnosis of the oral squamous cell carcinoma
The SEM image, absorption curve and Raman spectrum of the gold NPs. a The SEM image of the gold NPs. b The UV/visible absorption of the gold NPs and the gold NPs with serum. c SERS spectrum of serum, routine Raman spectrum of serum and background Raman spectrum of the gold NPs
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5384146&req=5

Fig1: The SEM image, absorption curve and Raman spectrum of the gold NPs. a The SEM image of the gold NPs. b The UV/visible absorption of the gold NPs and the gold NPs with serum. c SERS spectrum of serum, routine Raman spectrum of serum and background Raman spectrum of the gold NPs
Mentions: The SEM image of the pure gold NPs was shown in the Fig. 1a. The spherical NPs with a mean diameter of 55 nm were prepared in this method and had a maximal absorption at 530 nm. In the UV-visible absorption spectra shown in Fig. 1b, the pure NPs solution absorption band appeared in the around 530 nm wavelength region, and the band of the mixture of serum and NPs also remained in the same region but the intensity reduced due to the combination of gold NPs and biochemical substances in the serum. Compared with the regular Raman spectrum, the intensities of the SERS spectrum were enhanced enormously due to the gold NPs added in the serum (Fig. 1c).Fig. 1

View Article: PubMed Central - PubMed

ABSTRACT

Background: Oral squamous cell carcinoma (OSCC) is becoming more common across the globe. The prognosis of OSCC is largely dependent on the early detection. But the routine oral cavity examination may delay the diagnosis because the early oral malignant lesions may be clinically indistinguishable from benign or inflammatory diseases. In this study, the new diagnostic method is developed by using the surface enhanced Raman spectroscopy (SERS) to detect the serum samples from the cancer patients.

Method: The blood serum samples were collected from the OSCC patients, MEC patients and the volunteers without OSCC or MEC. Gold nanoparticles(NPs) were then mixed in the serum samples to obtain the high quality SERS spectra. There were totally 135 spectra of OSCC, 90 spectra of mucoepidermoid carcinoma (MEC) and 145 spectra of normal control group, which were captured by SERS successfully. Compared with the normal control group, the Raman spectral differences exhibited in the spectra of OSCC and MEC groups, which were assigned to the nucleic acids, proteins and lipids. Based on these spectral differences and features, the algorithms of principal component analysis(PCA) and linear discriminant analysis (LDA) were employed to analyze and classify the Raman spectra of different groups.

Results: Compared with the normal groups, the major increased peaks in the OSCC and MEC groups were assigned to the molecular structures of the nucleic acids and proteins. And these different major peaks between the OSCC and MEC groups were assigned to the special molecular structures of the carotenoids and lipids. The PCA-LDA results demonstrated that OSCC could be discriminated successfully from the normal control groups with a sensitivity of 80.7% and a specificity of 84.1%. The process of the cross validation proved the results analyzed by PCA-LDA were reliable.

Conclusion: The gold NPs were appropriate substances to capture the high-quality SERS spectra of the OSCC, MEC and normal serum samples. The results of this study confirm that SERS combined PCA-LDA had a giant capability to detect and diagnosis OSCC through the serum sample successfully.

No MeSH data available.