Limits...
High White Light Photosensitivity of SnSe Nanoplate-Graphene Nanocomposites

View Article: PubMed Central - PubMed

ABSTRACT

The multi-functional nanomaterial constructed with more than one type of materials has gained a great attention due to its promising application. Here, a high white light photodetector prototype established with two-dimensional material (2D) and 2D nanocomposites has been fabricated. The 2D-2D nanocomposites were synthesized with SnSe nanoplate and graphene. The device shows a linear I-V characterization behavior in the dark and the resistance dramatically decreases under the white light. Furthermore, the photosensitivity of the device is as large as 1110% with a rapid response time, which is much higher than pristine SnSe nanostructure reported. The results shown here may provide a valuable guidance to design and fabricate the photodetector based on the 2D-2D nanocomposites even beyond the SnSe nanoplate-graphene nanocomposites.

No MeSH data available.


The XRD pattern of the SnSe-graphene nanostructure
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5383919&req=5

Fig1: The XRD pattern of the SnSe-graphene nanostructure

Mentions: The powder X-ray diffraction (XRD) pattern is performed to elucidate the phase structure of the SnSe nanoplate-graphene nanocomposites. As shown in Fig. 1, all of the diffraction peaks could be indexed to the orthorhombic SnSe structure with cell unit of a = 11.50 Å, b = 4.15 Å, and c = 4.44 Å (PDF #48-1244 Pnma(62)), which is consistent with the previous reports [8, 22]. It is worth-noting that the predominant peaks are (400), which indicate highly orientation of the SnSe nanoplates grown along (100) zone axis.Fig. 1


High White Light Photosensitivity of SnSe Nanoplate-Graphene Nanocomposites
The XRD pattern of the SnSe-graphene nanostructure
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5383919&req=5

Fig1: The XRD pattern of the SnSe-graphene nanostructure
Mentions: The powder X-ray diffraction (XRD) pattern is performed to elucidate the phase structure of the SnSe nanoplate-graphene nanocomposites. As shown in Fig. 1, all of the diffraction peaks could be indexed to the orthorhombic SnSe structure with cell unit of a = 11.50 Å, b = 4.15 Å, and c = 4.44 Å (PDF #48-1244 Pnma(62)), which is consistent with the previous reports [8, 22]. It is worth-noting that the predominant peaks are (400), which indicate highly orientation of the SnSe nanoplates grown along (100) zone axis.Fig. 1

View Article: PubMed Central - PubMed

ABSTRACT

The multi-functional nanomaterial constructed with more than one type of materials has gained a great attention due to its promising application. Here, a high white light photodetector prototype established with two-dimensional material (2D) and 2D nanocomposites has been fabricated. The 2D-2D nanocomposites were synthesized with SnSe nanoplate and graphene. The device shows a linear I-V characterization behavior in the dark and the resistance dramatically decreases under the white light. Furthermore, the photosensitivity of the device is as large as 1110% with a rapid response time, which is much higher than pristine SnSe nanostructure reported. The results shown here may provide a valuable guidance to design and fabricate the photodetector based on the 2D-2D nanocomposites even beyond the SnSe nanoplate-graphene nanocomposites.

No MeSH data available.