Limits...
RAPD assisted selection of black gram ( Vigna mungo L. Hepper) towards the development of multiple disease resistant germplasm

View Article: PubMed Central - PubMed

ABSTRACT

Black gram (Vigna mungo L. Hepper), is an extensively studied food crop which is affected by many abiotic and biotic factors, especially diseases. The yield potential of Black gram is shallow due to lack of genetic variability and biotic stress susceptibility. Core biotic stress factors include mung bean yellow mosaic virus (MYMV), urdbean leaf crinkle virus (UCLV), wilt (Fusarium oxysporum) and powdery mildew (Erysiphe polygoni DC). Although many studies determine resistant varieties to a particular disease, however, it is often complimented by low yield and susceptibility to other diseases. Hence, this study focuses on investigating the genetic relationships among three varieties and nine accessions of black gram having disease resistance to previously described diseases and susceptibility using random amplified polymorphic deoxyribonucleic acid (RAPD) markers. A total of 33 RAPD primers were used for diversity analysis and yielded 206 fragments. Number of amplified fragments ranged from two (OPN-1) to 13 (OPF-1). The highest similarity coefficient was observed between IC-145202 and IC-164118 (0.921), while lowest similarity was between PU-31 and IC-145202 (0.572). The genetic diversity obtained in this study along with disease analysis suggests PU31as a useful variety for the development of markers linked to MYMV, UCLV, wilt and powdery mildew resistance by marker-assisted back cross breeding and facilitates the production of crosses with multiple disease resistance.

No MeSH data available.


Bar graph showing various fragments produced by primers and total polymorphisms produced by them
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5383788&req=5

Fig2: Bar graph showing various fragments produced by primers and total polymorphisms produced by them

Mentions: DNA-based markers are effective and reliable tools for measuring genetic diversity in crop germplasm and studying evolutionary relationship. Molecular genetic techniques using DNA polymorphism is increasingly used to characterize and identify a novel germplasm for uses in the crop breeding process (Collard and Mackill 2008). Most markers produced polymorphisms, with the exception of OPH3, OPH12 and OPQ1 (Fig. 1) which showed monomorphic bands. Percentage polymorphism was calculated by considering the amount of polymorphism produced per fragment. OPF1, OPF4, OPN1, OPN4, OPN9, OPN10, OPN13, OPN14, OPN15,OPJ15, OPQ1, OPQ6, OPQ9, OPQ5 showed 100% polymorphism, where OPF1 generated maximum number of fragments (Fig. 2).Fig. 1


RAPD assisted selection of black gram ( Vigna mungo L. Hepper) towards the development of multiple disease resistant germplasm
Bar graph showing various fragments produced by primers and total polymorphisms produced by them
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5383788&req=5

Fig2: Bar graph showing various fragments produced by primers and total polymorphisms produced by them
Mentions: DNA-based markers are effective and reliable tools for measuring genetic diversity in crop germplasm and studying evolutionary relationship. Molecular genetic techniques using DNA polymorphism is increasingly used to characterize and identify a novel germplasm for uses in the crop breeding process (Collard and Mackill 2008). Most markers produced polymorphisms, with the exception of OPH3, OPH12 and OPQ1 (Fig. 1) which showed monomorphic bands. Percentage polymorphism was calculated by considering the amount of polymorphism produced per fragment. OPF1, OPF4, OPN1, OPN4, OPN9, OPN10, OPN13, OPN14, OPN15,OPJ15, OPQ1, OPQ6, OPQ9, OPQ5 showed 100% polymorphism, where OPF1 generated maximum number of fragments (Fig. 2).Fig. 1

View Article: PubMed Central - PubMed

ABSTRACT

Black gram (Vigna mungo L. Hepper), is an extensively studied food crop which is affected by many abiotic and biotic factors, especially diseases. The yield potential of Black gram is shallow due to lack of genetic variability and biotic stress susceptibility. Core biotic stress factors include mung bean yellow mosaic virus (MYMV), urdbean leaf crinkle virus (UCLV), wilt (Fusarium oxysporum) and powdery mildew (Erysiphe polygoni DC). Although many studies determine resistant varieties to a particular disease, however, it is often complimented by low yield and susceptibility to other diseases. Hence, this study focuses on investigating the genetic relationships among three varieties and nine accessions of black gram having disease resistance to previously described diseases and susceptibility using random amplified polymorphic deoxyribonucleic acid (RAPD) markers. A total of 33 RAPD primers were used for diversity analysis and yielded 206 fragments. Number of amplified fragments ranged from two (OPN-1) to 13 (OPF-1). The highest similarity coefficient was observed between IC-145202 and IC-164118 (0.921), while lowest similarity was between PU-31 and IC-145202 (0.572). The genetic diversity obtained in this study along with disease analysis suggests PU31as a useful variety for the development of markers linked to MYMV, UCLV, wilt and powdery mildew resistance by marker-assisted back cross breeding and facilitates the production of crosses with multiple disease resistance.

No MeSH data available.