Limits...
Concealed, Unobtrusive Ear-Centered EEG Acquisition: cEEGrids for Transparent EEG

View Article: PubMed Central - PubMed

ABSTRACT

Electroencephalography (EEG) is an important clinical tool and frequently used to study the brain-behavior relationship in humans noninvasively. Traditionally, EEG signals are recorded by positioning electrodes on the scalp and keeping them in place with glue, rubber bands, or elastic caps. This setup provides good coverage of the head, but is impractical for EEG acquisition in natural daily-life situations. Here, we propose the transparent EEG concept. Transparent EEG aims for motion tolerant, highly portable, unobtrusive, and near invisible data acquisition with minimum disturbance of a user's daily activities. In recent years several ear-centered EEG solutions that are compatible with the transparent EEG concept have been presented. We discuss work showing that miniature electrodes placed in and around the human ear are a feasible solution, as they are sensitive enough to pick up electrical signals stemming from various brain and non-brain sources. We also describe the cEEGrid flex-printed sensor array, which enables unobtrusive multi-channel EEG acquisition from around the ear. In a number of validation studies we found that the cEEGrid enables the recording of meaningful continuous EEG, event-related potentials and neural oscillations. Here, we explain the rationale underlying the cEEGrid ear-EEG solution, present possible use cases and identify open issues that need to be solved on the way toward transparent EEG.

No MeSH data available.


Related in: MedlinePlus

Fifteen-second resting EEG data from a healthy boy, 7-years of age, with no history of epileptic seizures, whose older brother is diagnosed with rolando epilepsy. Note spike-wave EEG activity, indicated in gray. See Figure 2 for illustration of electrode labels on cEEGrid.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5383730&req=5

Figure 8: Fifteen-second resting EEG data from a healthy boy, 7-years of age, with no history of epileptic seizures, whose older brother is diagnosed with rolando epilepsy. Note spike-wave EEG activity, indicated in gray. See Figure 2 for illustration of electrode labels on cEEGrid.

Mentions: Figure 8 shows an illustrative example of epileptiform brain activity from one child (boy, 7 years). Two cEEGrids were attached around the ears and connected to the amplifier (SMARTING). Data was acquired for a few minutes, and spike-wave activity was evident by visual inspection. Long-term ear-EEG cEEGrid studies are needed to evaluate whether cEEGrids improve wearing comfort, while preserving the clinical value of the standard cap-EEG recordings.


Concealed, Unobtrusive Ear-Centered EEG Acquisition: cEEGrids for Transparent EEG
Fifteen-second resting EEG data from a healthy boy, 7-years of age, with no history of epileptic seizures, whose older brother is diagnosed with rolando epilepsy. Note spike-wave EEG activity, indicated in gray. See Figure 2 for illustration of electrode labels on cEEGrid.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5383730&req=5

Figure 8: Fifteen-second resting EEG data from a healthy boy, 7-years of age, with no history of epileptic seizures, whose older brother is diagnosed with rolando epilepsy. Note spike-wave EEG activity, indicated in gray. See Figure 2 for illustration of electrode labels on cEEGrid.
Mentions: Figure 8 shows an illustrative example of epileptiform brain activity from one child (boy, 7 years). Two cEEGrids were attached around the ears and connected to the amplifier (SMARTING). Data was acquired for a few minutes, and spike-wave activity was evident by visual inspection. Long-term ear-EEG cEEGrid studies are needed to evaluate whether cEEGrids improve wearing comfort, while preserving the clinical value of the standard cap-EEG recordings.

View Article: PubMed Central - PubMed

ABSTRACT

Electroencephalography (EEG) is an important clinical tool and frequently used to study the brain-behavior relationship in humans noninvasively. Traditionally, EEG signals are recorded by positioning electrodes on the scalp and keeping them in place with glue, rubber bands, or elastic caps. This setup provides good coverage of the head, but is impractical for EEG acquisition in natural daily-life situations. Here, we propose the transparent EEG concept. Transparent EEG aims for motion tolerant, highly portable, unobtrusive, and near invisible data acquisition with minimum disturbance of a user's daily activities. In recent years several ear-centered EEG solutions that are compatible with the transparent EEG concept have been presented. We discuss work showing that miniature electrodes placed in and around the human ear are a feasible solution, as they are sensitive enough to pick up electrical signals stemming from various brain and non-brain sources. We also describe the cEEGrid flex-printed sensor array, which enables unobtrusive multi-channel EEG acquisition from around the ear. In a number of validation studies we found that the cEEGrid enables the recording of meaningful continuous EEG, event-related potentials and neural oscillations. Here, we explain the rationale underlying the cEEGrid ear-EEG solution, present possible use cases and identify open issues that need to be solved on the way toward transparent EEG.

No MeSH data available.


Related in: MedlinePlus