Limits...
Floral Mass per Area and Water Maintenance Traits Are Correlated with Floral Longevity in Paphiopedilum (Orchidaceae)

View Article: PubMed Central - PubMed

ABSTRACT

Floral longevity (FL) determines the balance between pollination success and flower maintenance. While a longer floral duration enhances the ability of plants to attract pollinators, it can be detrimental if it negatively affects overall plant fitness. Longer-lived leaves display a positive correlation with their dry mass per unit area, which influences leaf construction costs and physiological functions. However, little is known about the association among FL and floral dry mass per unit area (FMA) and water maintenance traits. We investigated whether increased FL might incur similar costs. Our assessment of 11 species of Paphiopedilum (slipper orchids) considered the impact of FMA and flower water-maintenance characteristics on FL. We found a positive relationship between FL and FMA. Floral longevity showed significant correlations with osmotic potential at the turgor loss and bulk modulus of elasticity but not with FA. Neither the size nor the mass per area was correlated between leaves and flowers, indicating that flower and leaf economic traits evolved independently. Therefore, our findings demonstrate a clear relationship between FL and the capacity to maintain water status in the flower. These economic constraints also indicate that extending the flower life span can have a high physiological cost in Paphiopedilum.

No MeSH data available.


Pearson correlations (A) and phylogenetically independent contrast correlations (B) of floral longevity (FL) with floral dry mass per unit area (FMA) across 11 Paphiopedilum species.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5383722&req=5

Figure 3: Pearson correlations (A) and phylogenetically independent contrast correlations (B) of floral longevity (FL) with floral dry mass per unit area (FMA) across 11 Paphiopedilum species.

Mentions: Within our sample group of 11 species of Paphiopedilum, we found large interspecific diversity in leaf dry mass per unit area, leaf area, flower dry mass per unit area, floral area, FL, turgor loss point, and bulk modulus of elasticity (Table 1). Furthermore, significant relationships were found among traits associated with FL, FMA, and flower maintenance. Whereas, FL was positively correlated with FMA (P = 0.01), but not with FA (P = 0.74) (Figures 3, 4). Even after phylogeny was considered, FL was still correlated with FMA (P = 0.03) (Figure 3). Longevity was correlated negatively with πtlp (P = 0.02) and positively with ε (P < 0.001) (Figure 5). These correlations of FL with πtlp and ε remained significant before and after accounting for the phylogenetic relationships (πtlp : P = 0.04), ε: P < 0.001).


Floral Mass per Area and Water Maintenance Traits Are Correlated with Floral Longevity in Paphiopedilum (Orchidaceae)
Pearson correlations (A) and phylogenetically independent contrast correlations (B) of floral longevity (FL) with floral dry mass per unit area (FMA) across 11 Paphiopedilum species.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5383722&req=5

Figure 3: Pearson correlations (A) and phylogenetically independent contrast correlations (B) of floral longevity (FL) with floral dry mass per unit area (FMA) across 11 Paphiopedilum species.
Mentions: Within our sample group of 11 species of Paphiopedilum, we found large interspecific diversity in leaf dry mass per unit area, leaf area, flower dry mass per unit area, floral area, FL, turgor loss point, and bulk modulus of elasticity (Table 1). Furthermore, significant relationships were found among traits associated with FL, FMA, and flower maintenance. Whereas, FL was positively correlated with FMA (P = 0.01), but not with FA (P = 0.74) (Figures 3, 4). Even after phylogeny was considered, FL was still correlated with FMA (P = 0.03) (Figure 3). Longevity was correlated negatively with πtlp (P = 0.02) and positively with ε (P < 0.001) (Figure 5). These correlations of FL with πtlp and ε remained significant before and after accounting for the phylogenetic relationships (πtlp : P = 0.04), ε: P < 0.001).

View Article: PubMed Central - PubMed

ABSTRACT

Floral longevity (FL) determines the balance between pollination success and flower maintenance. While a longer floral duration enhances the ability of plants to attract pollinators, it can be detrimental if it negatively affects overall plant fitness. Longer-lived leaves display a positive correlation with their dry mass per unit area, which influences leaf construction costs and physiological functions. However, little is known about the association among FL and floral dry mass per unit area (FMA) and water maintenance traits. We investigated whether increased FL might incur similar costs. Our assessment of 11 species of Paphiopedilum (slipper orchids) considered the impact of FMA and flower water-maintenance characteristics on FL. We found a positive relationship between FL and FMA. Floral longevity showed significant correlations with osmotic potential at the turgor loss and bulk modulus of elasticity but not with FA. Neither the size nor the mass per area was correlated between leaves and flowers, indicating that flower and leaf economic traits evolved independently. Therefore, our findings demonstrate a clear relationship between FL and the capacity to maintain water status in the flower. These economic constraints also indicate that extending the flower life span can have a high physiological cost in Paphiopedilum.

No MeSH data available.