Limits...
Bacterial and Fungal Community Structures in Loess Plateau Grasslands with Different Grazing Intensities

View Article: PubMed Central - PubMed

ABSTRACT

The Loess Plateau of China is one of the most fragile ecosystems worldwide; thus, human production activities need to be conducted very cautiously. In this study, MiSeq high-throughput sequencing was applied to assess the relationship between bacterial and fungal community structures and changes in vegetation and soil physical and chemical properties induced by grazing, in four grasslands with different levels of grazing intensity (0, 2.67, 5.33, and 8.67 sheep/ha) in the semiarid region of the Loess Plateau. The relative abundances of the bacterial community in the grasslands with 2.67 and 5.33 sheep/ha were significantly higher than those in grasslands with 0 and 8.67 sheep/ha, and the fungal diversity was significantly lower for grasslands with 2.67 sheep/ha than for the other grasslands. Redundancy analysis (RDA) showed that plant biomass, nitrate, and total nitrogen have significant effects on bacterial community structure, whereas nitrate and total nitrogen also significantly affect fungal community structure. Variation partitioning showed that soil and plant characteristics influence the bacterial and fungal community structures; these characteristics explained 51.9 and 52.9% of the variation, respectively. Thus, bacterial and fungal community structures are very sensitive to grazing activity and change to different extents with different grazing intensities. Based on our findings, a grazing intensity of about 2.67 sheep/ha is considered the most appropriate in semiarid grassland of the Loess Plateau.

No MeSH data available.


Related in: MedlinePlus

Principal coordinates analysis of bacterial (A) and fungal (B) communities. The values of axes 1 and 2 are the percentages that can be explained by the corresponding axis.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5383705&req=5

Figure 2: Principal coordinates analysis of bacterial (A) and fungal (B) communities. The values of axes 1 and 2 are the percentages that can be explained by the corresponding axis.

Mentions: The predominant species in the bacterial and fungal communities were largely consistent among the four grazing regimens. However, differences in relative abundances were observed (Supplementary Figure S1). The bacterial phyla with high relative abundance were Actinobacteria, Proteobacteria, Acidobacteria, and Chloroflexi. The fungal phyla with high relative abundance were Ascomycota and Basidiomycota. The β-diversity was examined by PCA. The PCA clearly grouped the bacterial and fungal communities according to the four grazing regimens (Figures 2A,B). The first two axes (PC1 and PC2) explained 43.3 and 30.7%, respectively, of the total variance in the bacterial and fungal species in the four grasslands sampled.


Bacterial and Fungal Community Structures in Loess Plateau Grasslands with Different Grazing Intensities
Principal coordinates analysis of bacterial (A) and fungal (B) communities. The values of axes 1 and 2 are the percentages that can be explained by the corresponding axis.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5383705&req=5

Figure 2: Principal coordinates analysis of bacterial (A) and fungal (B) communities. The values of axes 1 and 2 are the percentages that can be explained by the corresponding axis.
Mentions: The predominant species in the bacterial and fungal communities were largely consistent among the four grazing regimens. However, differences in relative abundances were observed (Supplementary Figure S1). The bacterial phyla with high relative abundance were Actinobacteria, Proteobacteria, Acidobacteria, and Chloroflexi. The fungal phyla with high relative abundance were Ascomycota and Basidiomycota. The β-diversity was examined by PCA. The PCA clearly grouped the bacterial and fungal communities according to the four grazing regimens (Figures 2A,B). The first two axes (PC1 and PC2) explained 43.3 and 30.7%, respectively, of the total variance in the bacterial and fungal species in the four grasslands sampled.

View Article: PubMed Central - PubMed

ABSTRACT

The Loess Plateau of China is one of the most fragile ecosystems worldwide; thus, human production activities need to be conducted very cautiously. In this study, MiSeq high-throughput sequencing was applied to assess the relationship between bacterial and fungal community structures and changes in vegetation and soil physical and chemical properties induced by grazing, in four grasslands with different levels of grazing intensity (0, 2.67, 5.33, and 8.67 sheep/ha) in the semiarid region of the Loess Plateau. The relative abundances of the bacterial community in the grasslands with 2.67 and 5.33 sheep/ha were significantly higher than those in grasslands with 0 and 8.67 sheep/ha, and the fungal diversity was significantly lower for grasslands with 2.67 sheep/ha than for the other grasslands. Redundancy analysis (RDA) showed that plant biomass, nitrate, and total nitrogen have significant effects on bacterial community structure, whereas nitrate and total nitrogen also significantly affect fungal community structure. Variation partitioning showed that soil and plant characteristics influence the bacterial and fungal community structures; these characteristics explained 51.9 and 52.9% of the variation, respectively. Thus, bacterial and fungal community structures are very sensitive to grazing activity and change to different extents with different grazing intensities. Based on our findings, a grazing intensity of about 2.67 sheep/ha is considered the most appropriate in semiarid grassland of the Loess Plateau.

No MeSH data available.


Related in: MedlinePlus