Limits...
Bacterial and Fungal Community Structures in Loess Plateau Grasslands with Different Grazing Intensities

View Article: PubMed Central - PubMed

ABSTRACT

The Loess Plateau of China is one of the most fragile ecosystems worldwide; thus, human production activities need to be conducted very cautiously. In this study, MiSeq high-throughput sequencing was applied to assess the relationship between bacterial and fungal community structures and changes in vegetation and soil physical and chemical properties induced by grazing, in four grasslands with different levels of grazing intensity (0, 2.67, 5.33, and 8.67 sheep/ha) in the semiarid region of the Loess Plateau. The relative abundances of the bacterial community in the grasslands with 2.67 and 5.33 sheep/ha were significantly higher than those in grasslands with 0 and 8.67 sheep/ha, and the fungal diversity was significantly lower for grasslands with 2.67 sheep/ha than for the other grasslands. Redundancy analysis (RDA) showed that plant biomass, nitrate, and total nitrogen have significant effects on bacterial community structure, whereas nitrate and total nitrogen also significantly affect fungal community structure. Variation partitioning showed that soil and plant characteristics influence the bacterial and fungal community structures; these characteristics explained 51.9 and 52.9% of the variation, respectively. Thus, bacterial and fungal community structures are very sensitive to grazing activity and change to different extents with different grazing intensities. Based on our findings, a grazing intensity of about 2.67 sheep/ha is considered the most appropriate in semiarid grassland of the Loess Plateau.

No MeSH data available.


Estimated values of bacterial and fungal community relative abundances (A) and Shannon diversity index (B). Significant differences are indicated by different letters.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5383705&req=5

Figure 1: Estimated values of bacterial and fungal community relative abundances (A) and Shannon diversity index (B). Significant differences are indicated by different letters.

Mentions: Bacterial and fungal community relative abundances (Chao1) and diversity (Shannon; α-diversity) index values were compared for different grazing intensities (Figure 1). The Chao1 estimator indicated that bacterial community abundances in the S2.67 and S5.33 sample plots were significantly higher than those in S0 and S8.67; in addition, the community abundance in S0 was significantly higher than that in S8.67. The fungal community abundance was higher in the S0 sample plot than in the other plots (Figure 1A). The Shannon indices showed that the S0 and S2.67 bacterial communities were significantly more diverse than those of S5.33 and S8.67, while the fungal community was significantly less diverse in S2.67 than in the other three regimens.


Bacterial and Fungal Community Structures in Loess Plateau Grasslands with Different Grazing Intensities
Estimated values of bacterial and fungal community relative abundances (A) and Shannon diversity index (B). Significant differences are indicated by different letters.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5383705&req=5

Figure 1: Estimated values of bacterial and fungal community relative abundances (A) and Shannon diversity index (B). Significant differences are indicated by different letters.
Mentions: Bacterial and fungal community relative abundances (Chao1) and diversity (Shannon; α-diversity) index values were compared for different grazing intensities (Figure 1). The Chao1 estimator indicated that bacterial community abundances in the S2.67 and S5.33 sample plots were significantly higher than those in S0 and S8.67; in addition, the community abundance in S0 was significantly higher than that in S8.67. The fungal community abundance was higher in the S0 sample plot than in the other plots (Figure 1A). The Shannon indices showed that the S0 and S2.67 bacterial communities were significantly more diverse than those of S5.33 and S8.67, while the fungal community was significantly less diverse in S2.67 than in the other three regimens.

View Article: PubMed Central - PubMed

ABSTRACT

The Loess Plateau of China is one of the most fragile ecosystems worldwide; thus, human production activities need to be conducted very cautiously. In this study, MiSeq high-throughput sequencing was applied to assess the relationship between bacterial and fungal community structures and changes in vegetation and soil physical and chemical properties induced by grazing, in four grasslands with different levels of grazing intensity (0, 2.67, 5.33, and 8.67 sheep/ha) in the semiarid region of the Loess Plateau. The relative abundances of the bacterial community in the grasslands with 2.67 and 5.33 sheep/ha were significantly higher than those in grasslands with 0 and 8.67 sheep/ha, and the fungal diversity was significantly lower for grasslands with 2.67 sheep/ha than for the other grasslands. Redundancy analysis (RDA) showed that plant biomass, nitrate, and total nitrogen have significant effects on bacterial community structure, whereas nitrate and total nitrogen also significantly affect fungal community structure. Variation partitioning showed that soil and plant characteristics influence the bacterial and fungal community structures; these characteristics explained 51.9 and 52.9% of the variation, respectively. Thus, bacterial and fungal community structures are very sensitive to grazing activity and change to different extents with different grazing intensities. Based on our findings, a grazing intensity of about 2.67 sheep/ha is considered the most appropriate in semiarid grassland of the Loess Plateau.

No MeSH data available.