Limits...
Intriguing Interaction of Bacteriophage-Host Association: An Understanding in the Era of Omics

View Article: PubMed Central - PubMed

ABSTRACT

Innovations in next-generation sequencing technology have introduced new avenues in microbial studies through “omics” approaches. This technology has considerably augmented the knowledge of the microbial world without isolation prior to their identification. With an enormous volume of bacterial “omics” data, considerable attempts have been recently invested to improve an insight into virosphere. The interplay between bacteriophages and their host has created a significant influence on the biogeochemical cycles, microbial diversity, and bacterial population regulation. This review highlights various concepts such as genomics, transcriptomics, proteomics, and metabolomics to infer the phylogenetic affiliation and function of bacteriophages and their impact on diverse microbial communities. Omics technologies illuminate the role of bacteriophage in an environment, the influences of phage proteins on the bacterial host and provide information about the genes important for interaction with bacteria. These investigations will reveal some of bio-molecules and biomarkers of the novel phage which demand to be unveiled.

No MeSH data available.


Related in: MedlinePlus

Significance of bacteriophages in regulating environment. In this figure, (A) depicts infection and insertion phage DNA into the host cell. After the phage infection, the host cell may get converted into a virocell (B), containing vAMGs that leading to an altered regulation or novel functions in bacterial host cell. The phage infection leading to lytic cycle (C) results into lysing host cell hence, controlling cell population. Infected cell leading to a lysogeny cycle (D) may contain phage genome into the bacterial genome, which can lead to an increased microbial diversity because of horizontal gene transfers- HGT (E). Also, the dead debris of bacteria as a result of phage lysis enters the food-web and biogeochemical cycles (F), as a result the nutrients get re-circulated in the ecosystem.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5383658&req=5

Figure 1: Significance of bacteriophages in regulating environment. In this figure, (A) depicts infection and insertion phage DNA into the host cell. After the phage infection, the host cell may get converted into a virocell (B), containing vAMGs that leading to an altered regulation or novel functions in bacterial host cell. The phage infection leading to lytic cycle (C) results into lysing host cell hence, controlling cell population. Infected cell leading to a lysogeny cycle (D) may contain phage genome into the bacterial genome, which can lead to an increased microbial diversity because of horizontal gene transfers- HGT (E). Also, the dead debris of bacteria as a result of phage lysis enters the food-web and biogeochemical cycles (F), as a result the nutrients get re-circulated in the ecosystem.

Mentions: Whilst, the information about bacteria present on earth is better understood, data regarding viruses particularly bacteriophages (henceforth called phages) is still in its infancy. Phages are the most abundant and diverse group of viruses found on Earth (Short and Suttle, 2005). Interactions between the bacterial host and phage have significanty played an role in biogeochemical cycles, regulation of the microbial community structures and governing the microbial populations (Figure 1). Recent surveys have documented the capacity of phages in maintaining the stability of microflora in the human gut (Minot et al., 2011) and regulation of pathogen and multidrug resistance (MDR) in the environment (Parmar et al., 2017). In bacteria, 16S rRNA genes and several house-keeping genes serve as a biomarker which facilitate their identification, whereas, there is an absence of biomarker gene among phages, which poses as a hindrance for identification of phages and hence the phage database is quite insufficient (Edwards and Rohwer, 2005). Addressing the challenge to design a biomarker for phages may uncover new avenues in better understanding the virosphere. Plaque assay being a culture-dependent technique isolates a specific phage against a bacterial host. Subsequently, their identification can be worked out using phenotypic characteristics and sequencing (Sanchez et al., 2015). In an approach to improve a comprehensive insight into uncultivable phage and their interaction with the bacterial host, this review summarizes different NGS techniques and the bioinformatics tools that are applied to evaluate such data.


Intriguing Interaction of Bacteriophage-Host Association: An Understanding in the Era of Omics
Significance of bacteriophages in regulating environment. In this figure, (A) depicts infection and insertion phage DNA into the host cell. After the phage infection, the host cell may get converted into a virocell (B), containing vAMGs that leading to an altered regulation or novel functions in bacterial host cell. The phage infection leading to lytic cycle (C) results into lysing host cell hence, controlling cell population. Infected cell leading to a lysogeny cycle (D) may contain phage genome into the bacterial genome, which can lead to an increased microbial diversity because of horizontal gene transfers- HGT (E). Also, the dead debris of bacteria as a result of phage lysis enters the food-web and biogeochemical cycles (F), as a result the nutrients get re-circulated in the ecosystem.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5383658&req=5

Figure 1: Significance of bacteriophages in regulating environment. In this figure, (A) depicts infection and insertion phage DNA into the host cell. After the phage infection, the host cell may get converted into a virocell (B), containing vAMGs that leading to an altered regulation or novel functions in bacterial host cell. The phage infection leading to lytic cycle (C) results into lysing host cell hence, controlling cell population. Infected cell leading to a lysogeny cycle (D) may contain phage genome into the bacterial genome, which can lead to an increased microbial diversity because of horizontal gene transfers- HGT (E). Also, the dead debris of bacteria as a result of phage lysis enters the food-web and biogeochemical cycles (F), as a result the nutrients get re-circulated in the ecosystem.
Mentions: Whilst, the information about bacteria present on earth is better understood, data regarding viruses particularly bacteriophages (henceforth called phages) is still in its infancy. Phages are the most abundant and diverse group of viruses found on Earth (Short and Suttle, 2005). Interactions between the bacterial host and phage have significanty played an role in biogeochemical cycles, regulation of the microbial community structures and governing the microbial populations (Figure 1). Recent surveys have documented the capacity of phages in maintaining the stability of microflora in the human gut (Minot et al., 2011) and regulation of pathogen and multidrug resistance (MDR) in the environment (Parmar et al., 2017). In bacteria, 16S rRNA genes and several house-keeping genes serve as a biomarker which facilitate their identification, whereas, there is an absence of biomarker gene among phages, which poses as a hindrance for identification of phages and hence the phage database is quite insufficient (Edwards and Rohwer, 2005). Addressing the challenge to design a biomarker for phages may uncover new avenues in better understanding the virosphere. Plaque assay being a culture-dependent technique isolates a specific phage against a bacterial host. Subsequently, their identification can be worked out using phenotypic characteristics and sequencing (Sanchez et al., 2015). In an approach to improve a comprehensive insight into uncultivable phage and their interaction with the bacterial host, this review summarizes different NGS techniques and the bioinformatics tools that are applied to evaluate such data.

View Article: PubMed Central - PubMed

ABSTRACT

Innovations in next-generation sequencing technology have introduced new avenues in microbial studies through “omics” approaches. This technology has considerably augmented the knowledge of the microbial world without isolation prior to their identification. With an enormous volume of bacterial “omics” data, considerable attempts have been recently invested to improve an insight into virosphere. The interplay between bacteriophages and their host has created a significant influence on the biogeochemical cycles, microbial diversity, and bacterial population regulation. This review highlights various concepts such as genomics, transcriptomics, proteomics, and metabolomics to infer the phylogenetic affiliation and function of bacteriophages and their impact on diverse microbial communities. Omics technologies illuminate the role of bacteriophage in an environment, the influences of phage proteins on the bacterial host and provide information about the genes important for interaction with bacteria. These investigations will reveal some of bio-molecules and biomarkers of the novel phage which demand to be unveiled.

No MeSH data available.


Related in: MedlinePlus