Limits...
Filthy lucre: A metagenomic pilot study of microbes found on circulating currency in New York City

View Article: PubMed Central - PubMed

ABSTRACT

Background: Paper currency by its very nature is frequently transferred from one person to another and represents an important medium for human contact with—and potential exchange of—microbes. In this pilot study, we swabbed circulating $1 bills obtained from a New York City bank in February (Winter) and June (Summer) 2013 and used shotgun metagenomic sequencing to profile the communities found on their surface. Using basic culture conditions, we also tested whether viable microbes could be recovered from bills.

Results: Shotgun metagenomics identified eukaryotes as the most abundant sequences on money, followed by bacteria, viruses and archaea. Eukaryotic assemblages were dominated by human, other metazoan and fungal taxa. The currency investigated harbored a diverse microbial population that was dominated by human skin and oral commensals, including Propionibacterium acnes, Staphylococcus epidermidis and Micrococcus luteus. Other taxa detected not associated with humans included Lactococcus lactis and Streptococcus thermophilus, microbes typically associated with dairy production and fermentation. Culturing results indicated that viable microbes can be isolated from paper currency.

Conclusions: We conducted the first metagenomic characterization of the surface of paper money in the United States, establishing a baseline for microbes found on $1 bills circulating in New York City. Our results suggest that money amalgamates DNA from sources inhabiting the human microbiome, food, and other environmental inputs, some of which can be recovered as viable organisms. These monetary communities may be maintained through contact with human skin, and DNA obtained from money may provide a record of human behavior and health. Understanding these microbial profiles is especially relevant to public health as money could potentially mediate interpersonal transfer of microbes.

No MeSH data available.


Flowchart describing the experimental plan and workflow for sample collection, sequencing and metagenomic data analysis.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5383295&req=5

pone.0175527.g001: Flowchart describing the experimental plan and workflow for sample collection, sequencing and metagenomic data analysis.

Mentions: We used a three-part approach to create a metagenomic profile of circulating paper currency (illustrated in Fig 1). In part one, we investigated whether microbial DNA was detectable on the surface of $1 bills and compared bioinformatic workflows for metagenomic analysis to determine which was optimal. In part two, we collected $1 bills from the same bank six months later to compare the monetary microbial communities over time. Finally, we determined whether viable microbes could be cultured in vitro from $1 bills and how those communities compared to the communities recovered using only sequence-based characterization methods.


Filthy lucre: A metagenomic pilot study of microbes found on circulating currency in New York City
Flowchart describing the experimental plan and workflow for sample collection, sequencing and metagenomic data analysis.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5383295&req=5

pone.0175527.g001: Flowchart describing the experimental plan and workflow for sample collection, sequencing and metagenomic data analysis.
Mentions: We used a three-part approach to create a metagenomic profile of circulating paper currency (illustrated in Fig 1). In part one, we investigated whether microbial DNA was detectable on the surface of $1 bills and compared bioinformatic workflows for metagenomic analysis to determine which was optimal. In part two, we collected $1 bills from the same bank six months later to compare the monetary microbial communities over time. Finally, we determined whether viable microbes could be cultured in vitro from $1 bills and how those communities compared to the communities recovered using only sequence-based characterization methods.

View Article: PubMed Central - PubMed

ABSTRACT

Background: Paper currency by its very nature is frequently transferred from one person to another and represents an important medium for human contact with—and potential exchange of—microbes. In this pilot study, we swabbed circulating $1 bills obtained from a New York City bank in February (Winter) and June (Summer) 2013 and used shotgun metagenomic sequencing to profile the communities found on their surface. Using basic culture conditions, we also tested whether viable microbes could be recovered from bills.

Results: Shotgun metagenomics identified eukaryotes as the most abundant sequences on money, followed by bacteria, viruses and archaea. Eukaryotic assemblages were dominated by human, other metazoan and fungal taxa. The currency investigated harbored a diverse microbial population that was dominated by human skin and oral commensals, including Propionibacterium acnes, Staphylococcus epidermidis and Micrococcus luteus. Other taxa detected not associated with humans included Lactococcus lactis and Streptococcus thermophilus, microbes typically associated with dairy production and fermentation. Culturing results indicated that viable microbes can be isolated from paper currency.

Conclusions: We conducted the first metagenomic characterization of the surface of paper money in the United States, establishing a baseline for microbes found on $1 bills circulating in New York City. Our results suggest that money amalgamates DNA from sources inhabiting the human microbiome, food, and other environmental inputs, some of which can be recovered as viable organisms. These monetary communities may be maintained through contact with human skin, and DNA obtained from money may provide a record of human behavior and health. Understanding these microbial profiles is especially relevant to public health as money could potentially mediate interpersonal transfer of microbes.

No MeSH data available.