Limits...
Whole-Genome Analysis of Bartonella ancashensis , a Novel Pathogen Causing Verruga Peruana, Rural Ancash Region, Peru

View Article: PubMed Central - PubMed

ABSTRACT

The genus Bartonella contains >40 species, and an increasing number of these Bartonella species are being implicated in human disease. One such pathogen is Bartonella ancashensis, which was isolated in blood samples from 2 patients living in Caraz, Peru, during a clinical trial of treatment for bartonellosis. Three B. ancashensis strains were analyzed by using whole-genome restriction mapping and high-throughput pyrosequencing. Genome-wide comparative analysis of Bartonella species showed that B. ancashensis has features seen in modern and ancient lineages of Bartonella species and is more related to B. bacilliformis. The divergence between B. ancashensis and B. bacilliformis is much greater than what is seen between known Bartonella genetic lineages. In addition, B. ancashensis contains type IV secretion system proteins, which are not present in B. bacilliformis. Whole-genome analysis indicates that B. ancashensis might represent a distinct Bartonella lineage phylogenetically related to B. bacilliformis.

No MeSH data available.


Related in: MedlinePlus

Genetic arrangement of the genome of B. ancashensis isolate 20.00 from a patient with verruga peruana, rural Ancash region, Peru, compared with that of B. bacilliformis KC583. Black lines indicate chromosomes and gray lines link syntenic genomic regions that are rearranged between the 2 genomes. FliJ genes are indicated by black vertical bars, and flagellar gene clusters are indicated by arrows, which indicate direction of transcription.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC5382735&req=5

Figure 5: Genetic arrangement of the genome of B. ancashensis isolate 20.00 from a patient with verruga peruana, rural Ancash region, Peru, compared with that of B. bacilliformis KC583. Black lines indicate chromosomes and gray lines link syntenic genomic regions that are rearranged between the 2 genomes. FliJ genes are indicated by black vertical bars, and flagellar gene clusters are indicated by arrows, which indicate direction of transcription.

Mentions: Analysis identified 2 characteristic features of B. ancashensis: type IV secretion complex (VirB2) proteins, which are not found in B. bacilliformis; and flagella proteins, which are not found in Bartonella species in lineage 4, including human pathogens B. quintana and B. henselae (15,27,28). In isolates 20.60 and 41.60, the 31 flagellar genes encoded by B. ancashensis are located in the identical order and distances as their homologs in the B. bacilliformis genome. Isolate 20.00 has a large genomic inversion, and this rearrangement results in 1 gene (FliJ) required for production of flagella arranged in a reversed orientation and separated from the other genes of the main flagellar gene cluster. In isolate 20.00, FliJ is ≈600 kb from the flagellar gene cluster; in isolates 20.60 and 41.60, FliJ is ≈100 kb from this cluster (Figure 5).


Whole-Genome Analysis of Bartonella ancashensis , a Novel Pathogen Causing Verruga Peruana, Rural Ancash Region, Peru
Genetic arrangement of the genome of B. ancashensis isolate 20.00 from a patient with verruga peruana, rural Ancash region, Peru, compared with that of B. bacilliformis KC583. Black lines indicate chromosomes and gray lines link syntenic genomic regions that are rearranged between the 2 genomes. FliJ genes are indicated by black vertical bars, and flagellar gene clusters are indicated by arrows, which indicate direction of transcription.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC5382735&req=5

Figure 5: Genetic arrangement of the genome of B. ancashensis isolate 20.00 from a patient with verruga peruana, rural Ancash region, Peru, compared with that of B. bacilliformis KC583. Black lines indicate chromosomes and gray lines link syntenic genomic regions that are rearranged between the 2 genomes. FliJ genes are indicated by black vertical bars, and flagellar gene clusters are indicated by arrows, which indicate direction of transcription.
Mentions: Analysis identified 2 characteristic features of B. ancashensis: type IV secretion complex (VirB2) proteins, which are not found in B. bacilliformis; and flagella proteins, which are not found in Bartonella species in lineage 4, including human pathogens B. quintana and B. henselae (15,27,28). In isolates 20.60 and 41.60, the 31 flagellar genes encoded by B. ancashensis are located in the identical order and distances as their homologs in the B. bacilliformis genome. Isolate 20.00 has a large genomic inversion, and this rearrangement results in 1 gene (FliJ) required for production of flagella arranged in a reversed orientation and separated from the other genes of the main flagellar gene cluster. In isolate 20.00, FliJ is ≈600 kb from the flagellar gene cluster; in isolates 20.60 and 41.60, FliJ is ≈100 kb from this cluster (Figure 5).

View Article: PubMed Central - PubMed

ABSTRACT

The genus Bartonella contains >40 species, and an increasing number of these Bartonella species are being implicated in human disease. One such pathogen is Bartonella ancashensis, which was isolated in blood samples from 2 patients living in Caraz, Peru, during a clinical trial of treatment for bartonellosis. Three B. ancashensis strains were analyzed by using whole-genome restriction mapping and high-throughput pyrosequencing. Genome-wide comparative analysis of Bartonella species showed that B. ancashensis has features seen in modern and ancient lineages of Bartonella species and is more related to B. bacilliformis. The divergence between B. ancashensis and B. bacilliformis is much greater than what is seen between known Bartonella genetic lineages. In addition, B. ancashensis contains type IV secretion system proteins, which are not present in B. bacilliformis. Whole-genome analysis indicates that B. ancashensis might represent a distinct Bartonella lineage phylogenetically related to B. bacilliformis.

No MeSH data available.


Related in: MedlinePlus