Limits...
Esterase in Imported Fire Ants, Solenopsis invicta and S. richteri (Hymenoptera: Formicidae): Activity, Kinetics and Variation

View Article: PubMed Central - PubMed

ABSTRACT

Solenopsis invicta and Solenopsis richteri are two closely related invasive ants native to South America. Despite their similarity in biology and behavior, S. invicta is a more successful invasive species. Toxic tolerance has been found to be important to the success of some invasive species. Esterases play a crucial role in toxic tolerance of insects. Hence, we hypothesized that the more invasive S. invicta would have a higher esterase activity than S. richteri. Esterase activities were measured for workers and male and female alates of both ant species using α-naphthyl acetate and β-naphthyl acetate as substrates. Esterase activities in S. invicta were always significantly higher than those in S. richteri supporting our hypothesis. In S. invicta, male alates had the highest esterase activities followed by workers then female alates for both substrates. In S. richetri, for α-naphthyl acetate, male alates had the highest activity followed by female alates then workers, while for β-naphthyl acetate, female alates had the highest activity followed by male alates then workers. For workers, S. richteri showed significantly higher levels of variation about the mean esterase activity than S. invicta. However, S. invicta showed significantly higher levels of variation in both female and male alates.

No MeSH data available.


Esterase activity in individual female alates of Solenopsis invicta and S. richteri based on two substrates, α-naphthyl acetate (α-NA) and β-naphthyl acetate (β-NA).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5382690&req=5

f3: Esterase activity in individual female alates of Solenopsis invicta and S. richteri based on two substrates, α-naphthyl acetate (α-NA) and β-naphthyl acetate (β-NA).

Mentions: Esterase activities determined by using individual ants are summarized in Table 1. Solenopsis invicta always had significantly higher mean esterase activity than S. richteri for both α-NA (worker: z = −11.26, P < 0.0001; female alate: z = −4.91, P < 0.0001; male alate: z = 9.07, P < 0.0001) and β-NA (worker: z = −13.29, P < 0.0001; female alate: z = −4.30, P < 0.0001; male alate: z = 11.11, P < 0.0001). Pairwise comparison between castes within a species was all significant for both substrates (P ≤ 0.0009) (Table 1S). Male alates had significantly higher esterase activity than workers for both species on both substrates. On α-NA, male alates had significantly higher esterase activity than female alates for both species. So did S. invicta male alates on β–NA. However, S. richteri female alates had higher activity than male alates on β–NA. Esterase activity in individual workers is shown in Fig. 2. For both substrates, S. richteri had a greater variance than S. invicta. The data for S. invicta was normally distributed for both substrates. In contrast, data for S. richteri were not normal for both substrates (Figure S1). Esterase activities of individual female alates are shown in Fig. 3. S. invicta had a greater variance than S. richteri for both substrates. The data for S. richteri was normally distributed, but not the data for S. invicta (Figure S2). Esterase activity in male alates is shown in Fig. 4. S. invicta also had a greater variance than S. richteri for both substrates. All data were not normally distributed except the data for S. richteri on β-NA (Figure S3).


Esterase in Imported Fire Ants, Solenopsis invicta and S. richteri (Hymenoptera: Formicidae): Activity, Kinetics and Variation
Esterase activity in individual female alates of Solenopsis invicta and S. richteri based on two substrates, α-naphthyl acetate (α-NA) and β-naphthyl acetate (β-NA).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5382690&req=5

f3: Esterase activity in individual female alates of Solenopsis invicta and S. richteri based on two substrates, α-naphthyl acetate (α-NA) and β-naphthyl acetate (β-NA).
Mentions: Esterase activities determined by using individual ants are summarized in Table 1. Solenopsis invicta always had significantly higher mean esterase activity than S. richteri for both α-NA (worker: z = −11.26, P < 0.0001; female alate: z = −4.91, P < 0.0001; male alate: z = 9.07, P < 0.0001) and β-NA (worker: z = −13.29, P < 0.0001; female alate: z = −4.30, P < 0.0001; male alate: z = 11.11, P < 0.0001). Pairwise comparison between castes within a species was all significant for both substrates (P ≤ 0.0009) (Table 1S). Male alates had significantly higher esterase activity than workers for both species on both substrates. On α-NA, male alates had significantly higher esterase activity than female alates for both species. So did S. invicta male alates on β–NA. However, S. richteri female alates had higher activity than male alates on β–NA. Esterase activity in individual workers is shown in Fig. 2. For both substrates, S. richteri had a greater variance than S. invicta. The data for S. invicta was normally distributed for both substrates. In contrast, data for S. richteri were not normal for both substrates (Figure S1). Esterase activities of individual female alates are shown in Fig. 3. S. invicta had a greater variance than S. richteri for both substrates. The data for S. richteri was normally distributed, but not the data for S. invicta (Figure S2). Esterase activity in male alates is shown in Fig. 4. S. invicta also had a greater variance than S. richteri for both substrates. All data were not normally distributed except the data for S. richteri on β-NA (Figure S3).

View Article: PubMed Central - PubMed

ABSTRACT

Solenopsis invicta and Solenopsis richteri are two closely related invasive ants native to South America. Despite their similarity in biology and behavior, S. invicta is a more successful invasive species. Toxic tolerance has been found to be important to the success of some invasive species. Esterases play a crucial role in toxic tolerance of insects. Hence, we hypothesized that the more invasive S. invicta would have a higher esterase activity than S. richteri. Esterase activities were measured for workers and male and female alates of both ant species using &alpha;-naphthyl acetate and &beta;-naphthyl acetate as substrates. Esterase activities in S. invicta were always significantly higher than those in S. richteri supporting our hypothesis. In S. invicta, male alates had the highest esterase activities followed by workers then female alates for both substrates. In S. richetri, for &alpha;-naphthyl acetate, male alates had the highest activity followed by female alates then workers, while for &beta;-naphthyl acetate, female alates had the highest activity followed by male alates then workers. For workers, S. richteri showed significantly higher levels of variation about the mean esterase activity than S. invicta. However, S. invicta showed significantly higher levels of variation in both female and male alates.

No MeSH data available.