Limits...
A genetic variant of miR-148a binding site in the SCRN1 3 ′ -UTR is associated with susceptibility and prognosis of gastric cancer

View Article: PubMed Central - PubMed

ABSTRACT

Single nucleotide polymorphisms (SNPs) in the 3′-untranslated regions targeted by putative mircoRNA can change its binding strength, affecting the susceptibility and prognosis of cancer. We aimed to investigate the associations between SNPs within miR-148a binding sites and gastric cancer (GC) risk and prognosis. Using bioinformatics tools, we selected two SNPs (SCRN1 rs6976789 and PDYN rs2235749) located in miR-148a target sites. We genotyped the two SNPs in a case-control study comprising 753 GC patients and 949 cancer-free subjects. We found a significantly increased risk of GC associated with the SCRN1 rs6976789 C>T polymorphism [adjusted OR = 1.25, 95% confidence interval (CI) = 1.02–1.53; CT/TT vs. CC]. However, no significant association was found between the PDYN rs2235749 and GC risk in all genetic models. Furthermore, we evaluated whether SCRN1 rs6976789 affected the survival of GC patients. Results showed that individuals with SCRN1 rs6976789 TT genotype had poorer overall survival compared with those carried CC/CT genotypes in intestinal-type GC (adjusted HR = 2.47, 95% CI = 1.21–5.05). Luciferase report assay showed that the rs6976789 variant T allele influenced the binding ability of miR-148a. Our results suggested that the SCRN1 rs6976789 polymorphism may play an important role in the GC development and progression.

No MeSH data available.


Characterization and functional analyses of the 3′-UTR of SCRN1.(A) Schematic representation of reporter plasmids containing the SCRN1 3′-UTR, which was inserted downstream of Renilla luciferase gene in the psiCHECK™ -2 vector. (B) Complementarity between miR-148 and the SCRN1 3′-UTR site targeted. The SNP rs6976789 was located within the ‘seed region' of the miR-148a binding site. (C) The effect of SNP rs6976789 on the interaction between the SCRN1 3′-UTR and miR-148a in MGC-803 and BGC-823 cells. The luciferase activity of each construct was normalized against the negative control miRNA (NC) transient transfected with constructed vectors with G allele.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5382666&req=5

f2: Characterization and functional analyses of the 3′-UTR of SCRN1.(A) Schematic representation of reporter plasmids containing the SCRN1 3′-UTR, which was inserted downstream of Renilla luciferase gene in the psiCHECK™ -2 vector. (B) Complementarity between miR-148 and the SCRN1 3′-UTR site targeted. The SNP rs6976789 was located within the ‘seed region' of the miR-148a binding site. (C) The effect of SNP rs6976789 on the interaction between the SCRN1 3′-UTR and miR-148a in MGC-803 and BGC-823 cells. The luciferase activity of each construct was normalized against the negative control miRNA (NC) transient transfected with constructed vectors with G allele.

Mentions: To investigate whether the SNP rs6976789 may influence SCRN1 regulation mediated by miR-148a, we constructed luciferase reporter vectors by using psiCHECK™-2 vector (Fig. 2A). Based on bioinformatics analysis, the SCRN1 rs6976789 was located on the target site of miR-148a (Fig. 2B). As shown in Fig. 2C, vectors within the rs6976789 A allele had a 0.91-fold decreased luciferase activities in MGC cells (P = 0.041) and 0.93-fold decreased in BGC cells (P = 0.035), compared with those of the G allele. In contrast, the negative control miRNA transient transfected with constructed vectors didn't affect luciferase expression. These findings indicated that miR-148a bound and negatively regulated the transcription of SCRN1 and that this regulation was more negatively influenced by the variant A allele in vitro.


A genetic variant of miR-148a binding site in the SCRN1 3 ′ -UTR is associated with susceptibility and prognosis of gastric cancer
Characterization and functional analyses of the 3′-UTR of SCRN1.(A) Schematic representation of reporter plasmids containing the SCRN1 3′-UTR, which was inserted downstream of Renilla luciferase gene in the psiCHECK™ -2 vector. (B) Complementarity between miR-148 and the SCRN1 3′-UTR site targeted. The SNP rs6976789 was located within the ‘seed region' of the miR-148a binding site. (C) The effect of SNP rs6976789 on the interaction between the SCRN1 3′-UTR and miR-148a in MGC-803 and BGC-823 cells. The luciferase activity of each construct was normalized against the negative control miRNA (NC) transient transfected with constructed vectors with G allele.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5382666&req=5

f2: Characterization and functional analyses of the 3′-UTR of SCRN1.(A) Schematic representation of reporter plasmids containing the SCRN1 3′-UTR, which was inserted downstream of Renilla luciferase gene in the psiCHECK™ -2 vector. (B) Complementarity between miR-148 and the SCRN1 3′-UTR site targeted. The SNP rs6976789 was located within the ‘seed region' of the miR-148a binding site. (C) The effect of SNP rs6976789 on the interaction between the SCRN1 3′-UTR and miR-148a in MGC-803 and BGC-823 cells. The luciferase activity of each construct was normalized against the negative control miRNA (NC) transient transfected with constructed vectors with G allele.
Mentions: To investigate whether the SNP rs6976789 may influence SCRN1 regulation mediated by miR-148a, we constructed luciferase reporter vectors by using psiCHECK™-2 vector (Fig. 2A). Based on bioinformatics analysis, the SCRN1 rs6976789 was located on the target site of miR-148a (Fig. 2B). As shown in Fig. 2C, vectors within the rs6976789 A allele had a 0.91-fold decreased luciferase activities in MGC cells (P = 0.041) and 0.93-fold decreased in BGC cells (P = 0.035), compared with those of the G allele. In contrast, the negative control miRNA transient transfected with constructed vectors didn't affect luciferase expression. These findings indicated that miR-148a bound and negatively regulated the transcription of SCRN1 and that this regulation was more negatively influenced by the variant A allele in vitro.

View Article: PubMed Central - PubMed

ABSTRACT

Single nucleotide polymorphisms (SNPs) in the 3′-untranslated regions targeted by putative mircoRNA can change its binding strength, affecting the susceptibility and prognosis of cancer. We aimed to investigate the associations between SNPs within miR-148a binding sites and gastric cancer (GC) risk and prognosis. Using bioinformatics tools, we selected two SNPs (SCRN1 rs6976789 and PDYN rs2235749) located in miR-148a target sites. We genotyped the two SNPs in a case-control study comprising 753 GC patients and 949 cancer-free subjects. We found a significantly increased risk of GC associated with the SCRN1 rs6976789 C>T polymorphism [adjusted OR = 1.25, 95% confidence interval (CI) = 1.02–1.53; CT/TT vs. CC]. However, no significant association was found between the PDYN rs2235749 and GC risk in all genetic models. Furthermore, we evaluated whether SCRN1 rs6976789 affected the survival of GC patients. Results showed that individuals with SCRN1 rs6976789 TT genotype had poorer overall survival compared with those carried CC/CT genotypes in intestinal-type GC (adjusted HR = 2.47, 95% CI = 1.21–5.05). Luciferase report assay showed that the rs6976789 variant T allele influenced the binding ability of miR-148a. Our results suggested that the SCRN1 rs6976789 polymorphism may play an important role in the GC development and progression.

No MeSH data available.