Limits...
Comparative analysis of A-to-I editing in human and non-human primate brains reveals conserved patterns and context-dependent regulation of RNA editing

View Article: PubMed Central - PubMed

ABSTRACT

A-to-I RNA editing is an important process for generating molecular diversity in the brain through modification of transcripts encoding several proteins important for neuronal signaling. We investigated the relationships between the extent of editing at multiple substrate transcripts (5HT2C, MGLUR4, CADPS, GLUR2, GLUR4, and GABRA3) in brain tissue obtained from adult humans and rhesus macaques. Several patterns emerged from these studies revealing conservation of editing across primate species. Additionally, variability in the human population allows us to make novel inferences about the co-regulation of editing at different editing sites and even across different brain regions.

Electronic supplementary material: The online version of this article (doi:10.1186/s13041-017-0291-1) contains supplementary material, which is available to authorized users.

No MeSH data available.


Comparison of the average extent of editing in striatum and cortex. The extent of editing at each site is compared between striatum (blue) and cortex (red) revealing several conserved patterns spatial regulation of editing in primate brains. T-tests were used to compare means of the two brain regions, asterisks are only plotted when similar results are observed in both species and represent the p-value obtained comparing means of each brain region using T-tests (*p < .01)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5382662&req=5

Fig2: Comparison of the average extent of editing in striatum and cortex. The extent of editing at each site is compared between striatum (blue) and cortex (red) revealing several conserved patterns spatial regulation of editing in primate brains. T-tests were used to compare means of the two brain regions, asterisks are only plotted when similar results are observed in both species and represent the p-value obtained comparing means of each brain region using T-tests (*p < .01)

Mentions: The patterns of editing across different anatomical contexts appear to be highly conserved in monkeys and in humans. The extent of GLUR4-Flip and GABRA3 editing is significantly higher in the cortex then the striatum, irrespective of species (p < .01). CADPS editing was significantly lower in the cortex than in striatum in both species (p < .01) (Fig. 2). The conserved spatial dynamics of A-to-I editing in these two species supports the idea that precisely regulating the editing profiles of certain transcripts is vitally important for normal CNS function.Fig. 2


Comparative analysis of A-to-I editing in human and non-human primate brains reveals conserved patterns and context-dependent regulation of RNA editing
Comparison of the average extent of editing in striatum and cortex. The extent of editing at each site is compared between striatum (blue) and cortex (red) revealing several conserved patterns spatial regulation of editing in primate brains. T-tests were used to compare means of the two brain regions, asterisks are only plotted when similar results are observed in both species and represent the p-value obtained comparing means of each brain region using T-tests (*p < .01)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5382662&req=5

Fig2: Comparison of the average extent of editing in striatum and cortex. The extent of editing at each site is compared between striatum (blue) and cortex (red) revealing several conserved patterns spatial regulation of editing in primate brains. T-tests were used to compare means of the two brain regions, asterisks are only plotted when similar results are observed in both species and represent the p-value obtained comparing means of each brain region using T-tests (*p < .01)
Mentions: The patterns of editing across different anatomical contexts appear to be highly conserved in monkeys and in humans. The extent of GLUR4-Flip and GABRA3 editing is significantly higher in the cortex then the striatum, irrespective of species (p < .01). CADPS editing was significantly lower in the cortex than in striatum in both species (p < .01) (Fig. 2). The conserved spatial dynamics of A-to-I editing in these two species supports the idea that precisely regulating the editing profiles of certain transcripts is vitally important for normal CNS function.Fig. 2

View Article: PubMed Central - PubMed

ABSTRACT

A-to-I RNA editing is an important process for generating molecular diversity in the brain through modification of transcripts encoding several proteins important for neuronal signaling. We investigated the relationships between the extent of editing at multiple substrate transcripts (5HT2C, MGLUR4, CADPS, GLUR2, GLUR4, and GABRA3) in brain tissue obtained from adult humans and rhesus macaques. Several patterns emerged from these studies revealing conservation of editing across primate species. Additionally, variability in the human population allows us to make novel inferences about the co-regulation of editing at different editing sites and even across different brain regions.

Electronic supplementary material: The online version of this article (doi:10.1186/s13041-017-0291-1) contains supplementary material, which is available to authorized users.

No MeSH data available.