Limits...
Exposure to household furry pets influences the gut microbiota of infant at 3 – 4   months following various birth scenarios

View Article: PubMed Central - PubMed

ABSTRACT

Background: Early-life exposure to household pets has the capacity to reduce risk for overweight and allergic disease, especially following caesarean delivery. Since there is some evidence that pets also alter the gut microbial composition of infants, changes to the gut microbiome are putative pathways by which pet exposure can reduce these risks to health. To investigate the impact of pre- and postnatal pet exposure on infant gut microbiota following various birth scenarios, this study employed a large subsample of 746 infants from the Canadian Healthy Infant Longitudinal Development Study (CHILD) cohort, whose mothers were enrolled during pregnancy between 2009 and 2012. Participating mothers were asked to report on household pet ownership at recruitment during the second or third trimester and 3 months postpartum. Infant gut microbiota were profiled with 16S rRNA sequencing from faecal samples collected at the mean age of 3.3 months. Two categories of pet exposure (i) only during pregnancy and (ii) pre- and postnatally were compared to no pet exposure under different birth scenarios.

Results: Over half of studied infants were exposed to at least one furry pet in the prenatal and/or postnatal periods, of which 8% were exposed in pregnancy alone and 46.8% had exposure during both time periods. As a common effect in all birth scenarios, pre- and postnatal pet exposure enriched the abundance of Oscillospira and/or Ruminococcus (P < 0.05) with more than a twofold greater likelihood of high abundance. Among vaginally born infants with maternal intrapartum antibiotic prophylaxis exposure, Streptococcaceae were substantially and significantly reduced by pet exposure (P < 0.001, FDRp = 0.03), reflecting an 80% decreased likelihood of high abundance (OR 0.20, 95%CI, 0.06–0.70) for pet exposure during pregnancy alone and a 69% reduced likelihood (OR 0.31, 95%CI, 0.16–0.58) for exposure in the pre- and postnatal time periods. All of these associations were independent of maternal asthma/allergy status, siblingship, breastfeeding exclusivity and other home characteristics.

Conclusions: The impact of pet ownership varies under different birth scenarios; however, in common, exposure to pets increased the abundance of two bacteria, Ruminococcus and Oscillospira, which have been negatively associated with childhood atopy and obesity.

Electronic supplementary material: The online version of this article (doi:10.1186/s40168-017-0254-x) contains supplementary material, which is available to authorized users.

No MeSH data available.


Related in: MedlinePlus

Likelihoods of infant gut microbiota measures at 3–4 months according to pet exposure (parental alone vs. both pre- and postnatal) and various birth scenarios (a Vaginal, IAP-, b Vaginal, IAP+, c Shecduled Caesarean, and d Emergency Caesarean), with individual adjustments for potential confounding variables: Model A: location, B: Maternal race, C: Maternal asthma and D: maternal allergy during pregnancy, E: Type of home, F: Moving home, G: Siblingship, H: Antibiotic exposure, and I: Breastfeeding status
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5382463&req=5

Fig2: Likelihoods of infant gut microbiota measures at 3–4 months according to pet exposure (parental alone vs. both pre- and postnatal) and various birth scenarios (a Vaginal, IAP-, b Vaginal, IAP+, c Shecduled Caesarean, and d Emergency Caesarean), with individual adjustments for potential confounding variables: Model A: location, B: Maternal race, C: Maternal asthma and D: maternal allergy during pregnancy, E: Type of home, F: Moving home, G: Siblingship, H: Antibiotic exposure, and I: Breastfeeding status

Mentions: With prenatal pet exposure alone, there was a twofold odds for high abundance of Vellionellaceae and unclassified Lachnospiraceae; high F/P ratios were also more likely (Fig. 2 and Additional file 5: Table S5). These microbiota associations were attenuated when exposure to furry pets continued in the postnatal period. Collectively, pre- and postnatal pet ownership was associated with 1.5-fold increases to high Firmicutes species richness in infants, and high abundance of Verrucomicrobiaceae and of genus Clostridium (Fig. 2 and Additional file 5: Table S5).Fig. 2


Exposure to household furry pets influences the gut microbiota of infant at 3 – 4   months following various birth scenarios
Likelihoods of infant gut microbiota measures at 3–4 months according to pet exposure (parental alone vs. both pre- and postnatal) and various birth scenarios (a Vaginal, IAP-, b Vaginal, IAP+, c Shecduled Caesarean, and d Emergency Caesarean), with individual adjustments for potential confounding variables: Model A: location, B: Maternal race, C: Maternal asthma and D: maternal allergy during pregnancy, E: Type of home, F: Moving home, G: Siblingship, H: Antibiotic exposure, and I: Breastfeeding status
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5382463&req=5

Fig2: Likelihoods of infant gut microbiota measures at 3–4 months according to pet exposure (parental alone vs. both pre- and postnatal) and various birth scenarios (a Vaginal, IAP-, b Vaginal, IAP+, c Shecduled Caesarean, and d Emergency Caesarean), with individual adjustments for potential confounding variables: Model A: location, B: Maternal race, C: Maternal asthma and D: maternal allergy during pregnancy, E: Type of home, F: Moving home, G: Siblingship, H: Antibiotic exposure, and I: Breastfeeding status
Mentions: With prenatal pet exposure alone, there was a twofold odds for high abundance of Vellionellaceae and unclassified Lachnospiraceae; high F/P ratios were also more likely (Fig. 2 and Additional file 5: Table S5). These microbiota associations were attenuated when exposure to furry pets continued in the postnatal period. Collectively, pre- and postnatal pet ownership was associated with 1.5-fold increases to high Firmicutes species richness in infants, and high abundance of Verrucomicrobiaceae and of genus Clostridium (Fig. 2 and Additional file 5: Table S5).Fig. 2

View Article: PubMed Central - PubMed

ABSTRACT

Background: Early-life exposure to household pets has the capacity to reduce risk for overweight and allergic disease, especially following caesarean delivery. Since there is some evidence that pets also alter the gut microbial composition of infants, changes to the gut microbiome are putative pathways by which pet exposure can reduce these risks to health. To investigate the impact of pre- and postnatal pet exposure on infant gut microbiota following various birth scenarios, this study employed a large subsample of 746 infants from the Canadian Healthy Infant Longitudinal Development Study (CHILD) cohort, whose mothers were enrolled during pregnancy between 2009 and 2012. Participating mothers were asked to report on household pet ownership at recruitment during the second or third trimester and 3 months postpartum. Infant gut microbiota were profiled with 16S rRNA sequencing from faecal samples collected at the mean age of 3.3 months. Two categories of pet exposure (i) only during pregnancy and (ii) pre- and postnatally were compared to no pet exposure under different birth scenarios.

Results: Over half of studied infants were exposed to at least one furry pet in the prenatal and/or postnatal periods, of which 8% were exposed in pregnancy alone and 46.8% had exposure during both time periods. As a common effect in all birth scenarios, pre- and postnatal pet exposure enriched the abundance of Oscillospira and/or Ruminococcus (P < 0.05) with more than a twofold greater likelihood of high abundance. Among vaginally born infants with maternal intrapartum antibiotic prophylaxis exposure, Streptococcaceae were substantially and significantly reduced by pet exposure (P < 0.001, FDRp = 0.03), reflecting an 80% decreased likelihood of high abundance (OR 0.20, 95%CI, 0.06–0.70) for pet exposure during pregnancy alone and a 69% reduced likelihood (OR 0.31, 95%CI, 0.16–0.58) for exposure in the pre- and postnatal time periods. All of these associations were independent of maternal asthma/allergy status, siblingship, breastfeeding exclusivity and other home characteristics.

Conclusions: The impact of pet ownership varies under different birth scenarios; however, in common, exposure to pets increased the abundance of two bacteria, Ruminococcus and Oscillospira, which have been negatively associated with childhood atopy and obesity.

Electronic supplementary material: The online version of this article (doi:10.1186/s40168-017-0254-x) contains supplementary material, which is available to authorized users.

No MeSH data available.


Related in: MedlinePlus