Limits...
Exposure to household furry pets influences the gut microbiota of infant at 3 – 4   months following various birth scenarios

View Article: PubMed Central - PubMed

ABSTRACT

Background: Early-life exposure to household pets has the capacity to reduce risk for overweight and allergic disease, especially following caesarean delivery. Since there is some evidence that pets also alter the gut microbial composition of infants, changes to the gut microbiome are putative pathways by which pet exposure can reduce these risks to health. To investigate the impact of pre- and postnatal pet exposure on infant gut microbiota following various birth scenarios, this study employed a large subsample of 746 infants from the Canadian Healthy Infant Longitudinal Development Study (CHILD) cohort, whose mothers were enrolled during pregnancy between 2009 and 2012. Participating mothers were asked to report on household pet ownership at recruitment during the second or third trimester and 3 months postpartum. Infant gut microbiota were profiled with 16S rRNA sequencing from faecal samples collected at the mean age of 3.3 months. Two categories of pet exposure (i) only during pregnancy and (ii) pre- and postnatally were compared to no pet exposure under different birth scenarios.

Results: Over half of studied infants were exposed to at least one furry pet in the prenatal and/or postnatal periods, of which 8% were exposed in pregnancy alone and 46.8% had exposure during both time periods. As a common effect in all birth scenarios, pre- and postnatal pet exposure enriched the abundance of Oscillospira and/or Ruminococcus (P < 0.05) with more than a twofold greater likelihood of high abundance. Among vaginally born infants with maternal intrapartum antibiotic prophylaxis exposure, Streptococcaceae were substantially and significantly reduced by pet exposure (P < 0.001, FDRp = 0.03), reflecting an 80% decreased likelihood of high abundance (OR 0.20, 95%CI, 0.06–0.70) for pet exposure during pregnancy alone and a 69% reduced likelihood (OR 0.31, 95%CI, 0.16–0.58) for exposure in the pre- and postnatal time periods. All of these associations were independent of maternal asthma/allergy status, siblingship, breastfeeding exclusivity and other home characteristics.

Conclusions: The impact of pet ownership varies under different birth scenarios; however, in common, exposure to pets increased the abundance of two bacteria, Ruminococcus and Oscillospira, which have been negatively associated with childhood atopy and obesity.

Electronic supplementary material: The online version of this article (doi:10.1186/s40168-017-0254-x) contains supplementary material, which is available to authorized users.

No MeSH data available.


Related in: MedlinePlus

a Pet exposure and other covariates (at prenatal and postnatal) that influence the infant gut microbiota. b General impact of pet exposure and other covariates on gut microbiota measurements of infants at 3–4 months. Circle sizes and colour intensity represent the magnitude of correlation. Red circles = positive correlations; blue circles = negative correlations. Antibiotic exposure of infants was collective consideration of both indirect exposure (maternal IAP) and direct exposure (IV and oral antibiotics)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5382463&req=5

Fig1: a Pet exposure and other covariates (at prenatal and postnatal) that influence the infant gut microbiota. b General impact of pet exposure and other covariates on gut microbiota measurements of infants at 3–4 months. Circle sizes and colour intensity represent the magnitude of correlation. Red circles = positive correlations; blue circles = negative correlations. Antibiotic exposure of infants was collective consideration of both indirect exposure (maternal IAP) and direct exposure (IV and oral antibiotics)

Mentions: This study involved a subsample of 804 infants from three study sites (Edmonton, Vancouver and Winnipeg) of the CHILD cohort (www.canadianchildstudy.ca). Mothers of the studied infants were enrolled during pregnancy between 2009 and 2012. The mothers were asked about pet ownership in a standardized questionnaire at recruitment in the second or third trimester of pregnancy and 3 months postpartum. Microbiota analysis was performed on faecal samples collected from infants at 3–4 months, with complete pre- and postnatal pet exposure data (n = 753). A pet exposure variable denoting four mutually exclusive categories was created as follows: (1) no pet exposure in the pre- or postnatal periods, (2) only prenatal pet exposure, (3) both pre- and postnatal pet exposure and (4) only postnatal pet exposure (Fig. 1a). Due to the limited number of infants (n = 7) in the fourth category, we excluded that category from the analysis, leaving 746 with complete data for subsequent analysis. Table 1 shows demographic characteristics of the studied infants with differential pet exposure status. Data on other covariates were obtained from hospital records (mode of delivery, intrapartum antibiotic prophylaxis (IAP)) or from standardized questionnaires completed by mothers (maternal race, maternal asthma and allergy status during pregnancy, type of home, size of household, type of floor, presence of siblings, breastfeeding status and infant antibiotic exposure before 3 months). Written informed consent was obtained from parents at enrollment. This study was approved by the ethics board at the University of Alberta.Fig. 1


Exposure to household furry pets influences the gut microbiota of infant at 3 – 4   months following various birth scenarios
a Pet exposure and other covariates (at prenatal and postnatal) that influence the infant gut microbiota. b General impact of pet exposure and other covariates on gut microbiota measurements of infants at 3–4 months. Circle sizes and colour intensity represent the magnitude of correlation. Red circles = positive correlations; blue circles = negative correlations. Antibiotic exposure of infants was collective consideration of both indirect exposure (maternal IAP) and direct exposure (IV and oral antibiotics)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5382463&req=5

Fig1: a Pet exposure and other covariates (at prenatal and postnatal) that influence the infant gut microbiota. b General impact of pet exposure and other covariates on gut microbiota measurements of infants at 3–4 months. Circle sizes and colour intensity represent the magnitude of correlation. Red circles = positive correlations; blue circles = negative correlations. Antibiotic exposure of infants was collective consideration of both indirect exposure (maternal IAP) and direct exposure (IV and oral antibiotics)
Mentions: This study involved a subsample of 804 infants from three study sites (Edmonton, Vancouver and Winnipeg) of the CHILD cohort (www.canadianchildstudy.ca). Mothers of the studied infants were enrolled during pregnancy between 2009 and 2012. The mothers were asked about pet ownership in a standardized questionnaire at recruitment in the second or third trimester of pregnancy and 3 months postpartum. Microbiota analysis was performed on faecal samples collected from infants at 3–4 months, with complete pre- and postnatal pet exposure data (n = 753). A pet exposure variable denoting four mutually exclusive categories was created as follows: (1) no pet exposure in the pre- or postnatal periods, (2) only prenatal pet exposure, (3) both pre- and postnatal pet exposure and (4) only postnatal pet exposure (Fig. 1a). Due to the limited number of infants (n = 7) in the fourth category, we excluded that category from the analysis, leaving 746 with complete data for subsequent analysis. Table 1 shows demographic characteristics of the studied infants with differential pet exposure status. Data on other covariates were obtained from hospital records (mode of delivery, intrapartum antibiotic prophylaxis (IAP)) or from standardized questionnaires completed by mothers (maternal race, maternal asthma and allergy status during pregnancy, type of home, size of household, type of floor, presence of siblings, breastfeeding status and infant antibiotic exposure before 3 months). Written informed consent was obtained from parents at enrollment. This study was approved by the ethics board at the University of Alberta.Fig. 1

View Article: PubMed Central - PubMed

ABSTRACT

Background: Early-life exposure to household pets has the capacity to reduce risk for overweight and allergic disease, especially following caesarean delivery. Since there is some evidence that pets also alter the gut microbial composition of infants, changes to the gut microbiome are putative pathways by which pet exposure can reduce these risks to health. To investigate the impact of pre- and postnatal pet exposure on infant gut microbiota following various birth scenarios, this study employed a large subsample of 746 infants from the Canadian Healthy Infant Longitudinal Development Study (CHILD) cohort, whose mothers were enrolled during pregnancy between 2009 and 2012. Participating mothers were asked to report on household pet ownership at recruitment during the second or third trimester and 3 months postpartum. Infant gut microbiota were profiled with 16S rRNA sequencing from faecal samples collected at the mean age of 3.3 months. Two categories of pet exposure (i) only during pregnancy and (ii) pre- and postnatally were compared to no pet exposure under different birth scenarios.

Results: Over half of studied infants were exposed to at least one furry pet in the prenatal and/or postnatal periods, of which 8% were exposed in pregnancy alone and 46.8% had exposure during both time periods. As a common effect in all birth scenarios, pre- and postnatal pet exposure enriched the abundance of Oscillospira and/or Ruminococcus (P < 0.05) with more than a twofold greater likelihood of high abundance. Among vaginally born infants with maternal intrapartum antibiotic prophylaxis exposure, Streptococcaceae were substantially and significantly reduced by pet exposure (P < 0.001, FDRp = 0.03), reflecting an 80% decreased likelihood of high abundance (OR 0.20, 95%CI, 0.06–0.70) for pet exposure during pregnancy alone and a 69% reduced likelihood (OR 0.31, 95%CI, 0.16–0.58) for exposure in the pre- and postnatal time periods. All of these associations were independent of maternal asthma/allergy status, siblingship, breastfeeding exclusivity and other home characteristics.

Conclusions: The impact of pet ownership varies under different birth scenarios; however, in common, exposure to pets increased the abundance of two bacteria, Ruminococcus and Oscillospira, which have been negatively associated with childhood atopy and obesity.

Electronic supplementary material: The online version of this article (doi:10.1186/s40168-017-0254-x) contains supplementary material, which is available to authorized users.

No MeSH data available.


Related in: MedlinePlus