Limits...
Providing supplementary, artificial milk for large litters during lactation: effects on performance and health of sows and piglets: a case study

View Article: PubMed Central - PubMed

ABSTRACT

Background: One possible way to support raising large litter sizes in pigs is to offer supplementary, artificial milk ad libitum in the farrowing pen in addition to the sow’s milk. In order to evaluate the potential use of this method and its effects on performance and health, supplemented (n = 60) and control sows (n = 60) with their litters were tested over 15 batches in one herd during one year. In the supplemented group (SG), piglets had access to supplementary milk in addition to sow’s milk from their 2nd day of life until weaning (day 27). The litters of SG sows were adjusted to contain as many piglets as the sow had functional teats, whereas in the control group (CG), piglets were set to the number of functional teats minus one, due to animal welfare reasons.

Case presentation: With supplementary milk provision, the weaning of large litters was achieved without any negative impacts on performance and health. On average, 13.5 and 12.4 piglets were weaned in SG and CG, respectively (P < 0.05). While average weaning weights (SG: 7.8 kg v. CG: 7.8 kg; P > 0.05) and average daily weight gain of the piglets (SG: 0.25 kg v. CG: 0.25 kg; P > 0.05) did not differ, total litter weight was consequently higher in SG than in CG (104.9 kg v. 96.7 kg; P < 0.001). The average milk replacer intakes were 1.1 kg milk powder per day and batch, and varied significantly between the “warm” and “cold” seasons (1.5 v. 0.9 kg milk powder per batch and day; P < 0.001). No significant differences in the mortality rate or the occurrence of diarrhoea were detected in the piglets of both SG and CG (P > 0.05). With regard to documented medical treatments, facial lesions were treated less frequently in piglets of SG (46 v. 32 treatments; P < 0.05). There was no effect of supplementary milk on the loss of body weight, backfat thickness and body condition score of the sows (P > 0.05).

Conclusions: To summarise, in the presented case offering ad libitum supplementary, artificial milk supported the sow in raising large litters by compensating possible negative impacts of high piglet numbers on the weight gain of piglets and the body condition of the sows.

No MeSH data available.


Related in: MedlinePlus

Feeding curve of sows in the supplemented (SG) and control group (CG) in late pregnancy and during lactation. Feed amount (in kg) in relation to day of gestation and day of lactation and the respective feed with specific energy content (in Megajoule per kg feed)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5382459&req=5

Fig1: Feeding curve of sows in the supplemented (SG) and control group (CG) in late pregnancy and during lactation. Feed amount (in kg) in relation to day of gestation and day of lactation and the respective feed with specific energy content (in Megajoule per kg feed)

Mentions: Animals of this report were kept in one herd at the ‘Futterkamp’ Research Centre of the Chamber of Agriculture Schleswig-Holstein in Germany over 15 batches between July 2011 and April 2012. All animals were cared for by the Research Centre staff in accordance with the Federation of Animal Science Societies’ Animal Care Guidelines [9]. Per batch, four sows and their litters were selected for each supplemented group (SG) and control group (CG). In SG, additional artificial milk (Supp-Le-Milk®, Ltd. Boerries, Lindern, Germany) was provided for the piglets in special cups ad libitum (Supp-Le-Milk® system, Ltd. Boerries, Lindern, Germany), starting on the 2nd day post partum. In total, 60 sows and their progeny (n = 1,107 piglets) in SG, and 60 sows and their progeny (n = 963 piglets) in CG were analysed in detail. The sows were managed with a 28-day lactation period. Highly prolific sows (Porkuss®, Ltd. ZNVG, Neumünster, Germany) were used, and the litters were products of cross-breeding with Piétrain boars. On average, sows were in their fourth parity (parity class A (1/2): n = 28; parity class B (3/4): n = 47; parity class C (5–9): n = 45). Each sow was randomly assigned to CG or SG, and to one of the eight farrowing pens in the farrowing room, taking their parity numbers into account. The 17 and 23 sows in SG and CG which had had two consecutive lactations within the trial were analysed repeatedly in the same group, respectively. All farrowing pens (5.2 m2) were identical and contained an adjustable farrowing crate (115 cm × 62 cm × 168 cm) with heating plates (50 cm × 120 cm), heating lamps (days 1–7 post partum) for the piglets outside the crate, and playing materials (ball metal chain for piglets, plastic tube for sows). The farrowing room had its own air-conditioning with dripping ceilings. At higher temperatures, a humidification system was used. The milk provision system was installed with one milk tank in the central hallway and connections to the single milk cups in each farrowing pen by milk lines (four farrowing pens per milk tank). In CG pens, milk cups were locked with dummy plugs. The liquid milk replacer was prepared daily by mixing 120 g of milk powder (Supp-Le-Milk®, Ltd. Boerries, Lindern, Germany) with one litre of warm water (50 to 55 °C), which was then filled into the milk tank. Starting on day two post partum, the piglets had ad libitum access by pressing a nipple in the cup with their snout. The consumption of supplemented milk was measured daily in total for the four farrowing pens connected to the tank. The milk pipe system was cleaned daily by flushing fresh water through the system and disinfecting it with peracetic acid (Lerasept® Forte, Ltd. Stockmeier Chemie, Bielefeld, Germany). After each weaning, it was cleaned with alkaline detergents (Delaval Alkali 1®, Ltd. Delaval, Gent, Belgium). In addition, the piglets of SG and CG received pelleted creep feed (Primary Choice®, Ltd. Boerries, Lindern, Germany) from the 7th day of life. The consumed amount per litter was recorded daily. Moreover, the daily feed intake of the sows during lactation (13.2 MJ/kg), according to a feeding curve (Fig. 1), was documented per sensor. Litter sizes were standardised within 48 h post partum: SG sows retained as many piglets as they had functional teats, whereas CG sows retained one piglet less than they had functional teats. All piglets were cross-fostered only within their group. Surplus piglets were fostered by sows not taking part in the experiment in other farrowing rooms. During their first day of life, all piglets were weighed, tail-docked and received an iron injection. At the age of around four days, males were castrated.Fig. 1


Providing supplementary, artificial milk for large litters during lactation: effects on performance and health of sows and piglets: a case study
Feeding curve of sows in the supplemented (SG) and control group (CG) in late pregnancy and during lactation. Feed amount (in kg) in relation to day of gestation and day of lactation and the respective feed with specific energy content (in Megajoule per kg feed)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5382459&req=5

Fig1: Feeding curve of sows in the supplemented (SG) and control group (CG) in late pregnancy and during lactation. Feed amount (in kg) in relation to day of gestation and day of lactation and the respective feed with specific energy content (in Megajoule per kg feed)
Mentions: Animals of this report were kept in one herd at the ‘Futterkamp’ Research Centre of the Chamber of Agriculture Schleswig-Holstein in Germany over 15 batches between July 2011 and April 2012. All animals were cared for by the Research Centre staff in accordance with the Federation of Animal Science Societies’ Animal Care Guidelines [9]. Per batch, four sows and their litters were selected for each supplemented group (SG) and control group (CG). In SG, additional artificial milk (Supp-Le-Milk®, Ltd. Boerries, Lindern, Germany) was provided for the piglets in special cups ad libitum (Supp-Le-Milk® system, Ltd. Boerries, Lindern, Germany), starting on the 2nd day post partum. In total, 60 sows and their progeny (n = 1,107 piglets) in SG, and 60 sows and their progeny (n = 963 piglets) in CG were analysed in detail. The sows were managed with a 28-day lactation period. Highly prolific sows (Porkuss®, Ltd. ZNVG, Neumünster, Germany) were used, and the litters were products of cross-breeding with Piétrain boars. On average, sows were in their fourth parity (parity class A (1/2): n = 28; parity class B (3/4): n = 47; parity class C (5–9): n = 45). Each sow was randomly assigned to CG or SG, and to one of the eight farrowing pens in the farrowing room, taking their parity numbers into account. The 17 and 23 sows in SG and CG which had had two consecutive lactations within the trial were analysed repeatedly in the same group, respectively. All farrowing pens (5.2 m2) were identical and contained an adjustable farrowing crate (115 cm × 62 cm × 168 cm) with heating plates (50 cm × 120 cm), heating lamps (days 1–7 post partum) for the piglets outside the crate, and playing materials (ball metal chain for piglets, plastic tube for sows). The farrowing room had its own air-conditioning with dripping ceilings. At higher temperatures, a humidification system was used. The milk provision system was installed with one milk tank in the central hallway and connections to the single milk cups in each farrowing pen by milk lines (four farrowing pens per milk tank). In CG pens, milk cups were locked with dummy plugs. The liquid milk replacer was prepared daily by mixing 120 g of milk powder (Supp-Le-Milk®, Ltd. Boerries, Lindern, Germany) with one litre of warm water (50 to 55 °C), which was then filled into the milk tank. Starting on day two post partum, the piglets had ad libitum access by pressing a nipple in the cup with their snout. The consumption of supplemented milk was measured daily in total for the four farrowing pens connected to the tank. The milk pipe system was cleaned daily by flushing fresh water through the system and disinfecting it with peracetic acid (Lerasept® Forte, Ltd. Stockmeier Chemie, Bielefeld, Germany). After each weaning, it was cleaned with alkaline detergents (Delaval Alkali 1®, Ltd. Delaval, Gent, Belgium). In addition, the piglets of SG and CG received pelleted creep feed (Primary Choice®, Ltd. Boerries, Lindern, Germany) from the 7th day of life. The consumed amount per litter was recorded daily. Moreover, the daily feed intake of the sows during lactation (13.2 MJ/kg), according to a feeding curve (Fig. 1), was documented per sensor. Litter sizes were standardised within 48 h post partum: SG sows retained as many piglets as they had functional teats, whereas CG sows retained one piglet less than they had functional teats. All piglets were cross-fostered only within their group. Surplus piglets were fostered by sows not taking part in the experiment in other farrowing rooms. During their first day of life, all piglets were weighed, tail-docked and received an iron injection. At the age of around four days, males were castrated.Fig. 1

View Article: PubMed Central - PubMed

ABSTRACT

Background: One possible way to support raising large litter sizes in pigs is to offer supplementary, artificial milk ad libitum in the farrowing pen in addition to the sow’s milk. In order to evaluate the potential use of this method and its effects on performance and health, supplemented (n = 60) and control sows (n = 60) with their litters were tested over 15 batches in one herd during one year. In the supplemented group (SG), piglets had access to supplementary milk in addition to sow’s milk from their 2nd day of life until weaning (day 27). The litters of SG sows were adjusted to contain as many piglets as the sow had functional teats, whereas in the control group (CG), piglets were set to the number of functional teats minus one, due to animal welfare reasons.

Case presentation: With supplementary milk provision, the weaning of large litters was achieved without any negative impacts on performance and health. On average, 13.5 and 12.4 piglets were weaned in SG and CG, respectively (P < 0.05). While average weaning weights (SG: 7.8 kg v. CG: 7.8 kg; P > 0.05) and average daily weight gain of the piglets (SG: 0.25 kg v. CG: 0.25 kg; P > 0.05) did not differ, total litter weight was consequently higher in SG than in CG (104.9 kg v. 96.7 kg; P < 0.001). The average milk replacer intakes were 1.1 kg milk powder per day and batch, and varied significantly between the “warm” and “cold” seasons (1.5 v. 0.9 kg milk powder per batch and day; P < 0.001). No significant differences in the mortality rate or the occurrence of diarrhoea were detected in the piglets of both SG and CG (P > 0.05). With regard to documented medical treatments, facial lesions were treated less frequently in piglets of SG (46 v. 32 treatments; P < 0.05). There was no effect of supplementary milk on the loss of body weight, backfat thickness and body condition score of the sows (P > 0.05).

Conclusions: To summarise, in the presented case offering ad libitum supplementary, artificial milk supported the sow in raising large litters by compensating possible negative impacts of high piglet numbers on the weight gain of piglets and the body condition of the sows.

No MeSH data available.


Related in: MedlinePlus