Limits...
Localization of Staphylococcus aureus in tissue from the nasal vestibule in healthy carriers

View Article: PubMed Central - PubMed

ABSTRACT

Background: Colonization of the body is an important step in Staphylococcus aureus infection. S. aureus colonizes skin and mucous membranes in humans and several animal species. One important ecological niche of S. aureus is the anterior nares. More than 60% of the S. aureus in the nose are found in vestibulum nasi. Our aim was to describe the localization of S. aureus in nasal tissue from healthy carriers.

Methods: Punch skin biopsies were taken from vestibulum nasi from healthy volunteers (S. aureus carriers and non−/intermittent carriers, n = 39) attending the population-based Tromsø 6 study. The tissue samples were processed as frozen sections before immunostaining with a specific S. aureus antibody, and finally evaluated by a confocal laser-scanning microscope.

Results: Our results suggest that S. aureus colonize both the upper and lower layers of the epidermis within the nasal epithelium of healthy individuals. The number of S. aureus in epidermis was surprisingly low. Intracellular localization of S. aureus in nasal tissue from healthy individuals was also detected.

Conclusions: Knowledge of the exact localization of S. aureus in nasal tissue is important for the understanding of the host responses against S. aureus. Our results may have consequences for the eradication strategy of S. aureus in carriers, and further work can provide us with tools for targeted prevention of S. aureus colonisation and infection.

Electronic supplementary material: The online version of this article (doi:10.1186/s12866-017-0997-3) contains supplementary material, which is available to authorized users.

No MeSH data available.


Related in: MedlinePlus

Intracellular localization of S. aureus in nasal epithelial cells. S. aureus is labeled with primary rabbit polyclonal antibody to S. aureus (Abcam), secondary antibody Alexa Fluor 488 goat anti-rabbit IgG (green) (Molecular Probes™, Thermo Fisher Scientific), DRAQ5 (BioStatus) for keratinocyte nuclei (blue) and Alexa Fluor 594 Phalloidin (A12381, Molecular Probes™; Thermo Fisher Scientific) for actin (red). Confocal laser scanning microscopy of frozen sections. Projection is constructed from confocal Z-stacks (0,2 um thick), 63× objective. Image to the left and on top corresponds to a vertical view in the z-plane. Z-plane images reveal a single cellular nucleus (blue) closely related to fluorescing S. aureus (green)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5382455&req=5

Fig7: Intracellular localization of S. aureus in nasal epithelial cells. S. aureus is labeled with primary rabbit polyclonal antibody to S. aureus (Abcam), secondary antibody Alexa Fluor 488 goat anti-rabbit IgG (green) (Molecular Probes™, Thermo Fisher Scientific), DRAQ5 (BioStatus) for keratinocyte nuclei (blue) and Alexa Fluor 594 Phalloidin (A12381, Molecular Probes™; Thermo Fisher Scientific) for actin (red). Confocal laser scanning microscopy of frozen sections. Projection is constructed from confocal Z-stacks (0,2 um thick), 63× objective. Image to the left and on top corresponds to a vertical view in the z-plane. Z-plane images reveal a single cellular nucleus (blue) closely related to fluorescing S. aureus (green)

Mentions: Intracellular localization of S. aureus was assessed by CLSM/IHC (Fig. 7) using specific antibodies to S. aureus and staining of different structures (nucleus and actin). Three-dimensional reconstruction of highly magnified z-stacks was possible using CLSM. Consecutive z-plane images (Z-scan) showed fluorescent S. aureus (green) in close proximity/closely localized to the cellular nuclei of epithelial cells (blue) (Fig. 7).Fig. 7


Localization of Staphylococcus aureus in tissue from the nasal vestibule in healthy carriers
Intracellular localization of S. aureus in nasal epithelial cells. S. aureus is labeled with primary rabbit polyclonal antibody to S. aureus (Abcam), secondary antibody Alexa Fluor 488 goat anti-rabbit IgG (green) (Molecular Probes™, Thermo Fisher Scientific), DRAQ5 (BioStatus) for keratinocyte nuclei (blue) and Alexa Fluor 594 Phalloidin (A12381, Molecular Probes™; Thermo Fisher Scientific) for actin (red). Confocal laser scanning microscopy of frozen sections. Projection is constructed from confocal Z-stacks (0,2 um thick), 63× objective. Image to the left and on top corresponds to a vertical view in the z-plane. Z-plane images reveal a single cellular nucleus (blue) closely related to fluorescing S. aureus (green)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5382455&req=5

Fig7: Intracellular localization of S. aureus in nasal epithelial cells. S. aureus is labeled with primary rabbit polyclonal antibody to S. aureus (Abcam), secondary antibody Alexa Fluor 488 goat anti-rabbit IgG (green) (Molecular Probes™, Thermo Fisher Scientific), DRAQ5 (BioStatus) for keratinocyte nuclei (blue) and Alexa Fluor 594 Phalloidin (A12381, Molecular Probes™; Thermo Fisher Scientific) for actin (red). Confocal laser scanning microscopy of frozen sections. Projection is constructed from confocal Z-stacks (0,2 um thick), 63× objective. Image to the left and on top corresponds to a vertical view in the z-plane. Z-plane images reveal a single cellular nucleus (blue) closely related to fluorescing S. aureus (green)
Mentions: Intracellular localization of S. aureus was assessed by CLSM/IHC (Fig. 7) using specific antibodies to S. aureus and staining of different structures (nucleus and actin). Three-dimensional reconstruction of highly magnified z-stacks was possible using CLSM. Consecutive z-plane images (Z-scan) showed fluorescent S. aureus (green) in close proximity/closely localized to the cellular nuclei of epithelial cells (blue) (Fig. 7).Fig. 7

View Article: PubMed Central - PubMed

ABSTRACT

Background: Colonization of the body is an important step in Staphylococcus aureus infection. S. aureus colonizes skin and mucous membranes in humans and several animal species. One important ecological niche of S. aureus is the anterior nares. More than 60% of the S. aureus in the nose are found in vestibulum nasi. Our aim was to describe the localization of S. aureus in nasal tissue from healthy carriers.

Methods: Punch skin biopsies were taken from vestibulum nasi from healthy volunteers (S. aureus carriers and non−/intermittent carriers, n = 39) attending the population-based Tromsø 6 study. The tissue samples were processed as frozen sections before immunostaining with a specific S. aureus antibody, and finally evaluated by a confocal laser-scanning microscope.

Results: Our results suggest that S. aureus colonize both the upper and lower layers of the epidermis within the nasal epithelium of healthy individuals. The number of S. aureus in epidermis was surprisingly low. Intracellular localization of S. aureus in nasal tissue from healthy individuals was also detected.

Conclusions: Knowledge of the exact localization of S. aureus in nasal tissue is important for the understanding of the host responses against S. aureus. Our results may have consequences for the eradication strategy of S. aureus in carriers, and further work can provide us with tools for targeted prevention of S. aureus colonisation and infection.

Electronic supplementary material: The online version of this article (doi:10.1186/s12866-017-0997-3) contains supplementary material, which is available to authorized users.

No MeSH data available.


Related in: MedlinePlus