Limits...
Synthesis of umbelliferone derivatives in Escherichia coli and their biological activities

View Article: PubMed Central - PubMed

ABSTRACT

Background: Umbelliferone, also known as 7-hydroxycoumarin, is a phenolic metabolite found in many familiar plants. Its derivatives have been shown to have various pharmacological and chemo-preventive effects on human health. A uridine diphosphate glycosyltransferase YjiC from Bacillus licheniformis DSM 13, a cytochrome P450BM3 (CYP450 BM3) variant namely mutant 13 (M13) from Bacillus megaterium, and an O-methyltransferase from Streptomyces avermitilis (SaOMT2) were used for modifications of umbelliferone.

Results: Three umbelliferone derivatives (esculetin, skimmin, and herniarin) were generated through enzymatic and whole cell catalysis. To improve the efficiencies of biotransformation, different media, incubation time and concentration of substrate were optimized and the production was scaled up using a 3-L fermentor. The maximum yields of esculetin, skimmin, and herniarin were 337.10 μM (67.62%), 995.43 μM (99.54%), and 37.13 μM (37.13%), respectively. The water solubility of esculetin and skimmin were 1.28-folds and 3.98-folds as high as umbelliferone, respectively, whereas herniarin was 1.89-folds less soluble than umbelliferone. Moreover, the antibacterial and anticancer activities of herniarin showed higher than umbelliferone, esculetin and skimmin.

Conclusions: This study proves that both native and engineered enzymes could be employed for the production of precious compounds via whole cell biocatalysis. We successfully produced three molecules herniarin, esculetin and skimmin in practical amounts and their antibacterial and anticancer properties were accessed. One of the newly synthesized molecules the present research suggests that the combinatorial biosynthesis of different biosynthetic enzymes could rapidly promote to a novel secondary metabolite.

Electronic supplementary material: The online version of this article (doi:10.1186/s13036-017-0056-5) contains supplementary material, which is available to authorized users.

No MeSH data available.


Related in: MedlinePlus

The growth of four cancer cell lines were treated with umbelliferone and its derivatives
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5382406&req=5

Fig4: The growth of four cancer cell lines were treated with umbelliferone and its derivatives

Mentions: All prepared compounds were further evaluated for their in vitro cytotoxicity by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay against four different cancer cell lines (Fig. 4). Results showed that herniarin exhibited good cytotoxic activities compared to the other three compounds. Cell viability of skin melanoma (B16F10), gastric carcinoma (AGS), epitheliod cervix carcinoma (HeLa) and hepatic carcinoma (HepG2) reduced approximately 32.63%, 20.25%, 12.79%, and 31.28% (p < 0.05), respectively, compared to controls, when treated 400 μM of herniarin. The 50% inhibitory concentration (IC50) values of herniarin for B16F10, AGS, HeLa and HepG2 cells were 197.0, 28.29, 80.21, and 206.1 μM, respectively. Skimmin inhibited AGS cell lines with an IC50 value of 34.42 μM. However, esculetin did not show any activity against the tested cell lines, whereas umbelliferone exhibited effective anticancer activity against AGS and HepG2 cell lines with IC50 values of 129.9 and 222.3 μM, respectively (Additional file 1: Table S2). These results suggest that herniarin and skimmin can remarkable reduce the cell viability of AGS cell line in a dose-dependent manner. This is the first report of the activity of the two compounds against AGS cell line.Fig. 4


Synthesis of umbelliferone derivatives in Escherichia coli and their biological activities
The growth of four cancer cell lines were treated with umbelliferone and its derivatives
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5382406&req=5

Fig4: The growth of four cancer cell lines were treated with umbelliferone and its derivatives
Mentions: All prepared compounds were further evaluated for their in vitro cytotoxicity by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay against four different cancer cell lines (Fig. 4). Results showed that herniarin exhibited good cytotoxic activities compared to the other three compounds. Cell viability of skin melanoma (B16F10), gastric carcinoma (AGS), epitheliod cervix carcinoma (HeLa) and hepatic carcinoma (HepG2) reduced approximately 32.63%, 20.25%, 12.79%, and 31.28% (p < 0.05), respectively, compared to controls, when treated 400 μM of herniarin. The 50% inhibitory concentration (IC50) values of herniarin for B16F10, AGS, HeLa and HepG2 cells were 197.0, 28.29, 80.21, and 206.1 μM, respectively. Skimmin inhibited AGS cell lines with an IC50 value of 34.42 μM. However, esculetin did not show any activity against the tested cell lines, whereas umbelliferone exhibited effective anticancer activity against AGS and HepG2 cell lines with IC50 values of 129.9 and 222.3 μM, respectively (Additional file 1: Table S2). These results suggest that herniarin and skimmin can remarkable reduce the cell viability of AGS cell line in a dose-dependent manner. This is the first report of the activity of the two compounds against AGS cell line.Fig. 4

View Article: PubMed Central - PubMed

ABSTRACT

Background: Umbelliferone, also known as 7-hydroxycoumarin, is a phenolic metabolite found in many familiar plants. Its derivatives have been shown to have various pharmacological and chemo-preventive effects on human health. A uridine diphosphate glycosyltransferase YjiC from Bacillus licheniformis DSM 13, a cytochrome P450BM3 (CYP450 BM3) variant namely mutant 13 (M13) from Bacillus megaterium, and an O-methyltransferase from Streptomyces avermitilis (SaOMT2) were used for modifications of umbelliferone.

Results: Three umbelliferone derivatives (esculetin, skimmin, and herniarin) were generated through enzymatic and whole cell catalysis. To improve the efficiencies of biotransformation, different media, incubation time and concentration of substrate were optimized and the production was scaled up using a 3-L fermentor. The maximum yields of esculetin, skimmin, and herniarin were 337.10&nbsp;&mu;M (67.62%), 995.43&nbsp;&mu;M (99.54%), and 37.13&nbsp;&mu;M (37.13%), respectively. The water solubility of esculetin and skimmin were 1.28-folds and 3.98-folds as high as umbelliferone, respectively, whereas herniarin was 1.89-folds less soluble than umbelliferone. Moreover, the antibacterial and anticancer activities of herniarin showed higher than umbelliferone, esculetin and skimmin.

Conclusions: This study proves that both native and engineered enzymes could be employed for the production of precious compounds via whole cell biocatalysis. We successfully produced three molecules herniarin, esculetin and skimmin in practical amounts and their antibacterial and anticancer properties were accessed. One of the newly synthesized molecules the present research suggests that the combinatorial biosynthesis of different biosynthetic enzymes could rapidly promote to a novel secondary metabolite.

Electronic supplementary material: The online version of this article (doi:10.1186/s13036-017-0056-5) contains supplementary material, which is available to authorized users.

No MeSH data available.


Related in: MedlinePlus