Limits...
Water palatability, a matter of taste

View Article: PubMed Central - PubMed

ABSTRACT

Background: The aim of this trial was to test whether the temperature or additives of the drinking water affected water uptake by nursery pigs. We designed a repeated 4 × 4 Latin Square to control for confounding factors such as; carry-over effects, learning of a preferential taste, daily variation within groups and regular increase of uptake over a day due to diurnal drinking patterns. Water types tested were control water (A); warm water (33 °C); (B); organic acid additive 1 (C), and organic acid additive 2 (D).

Results: The piglets drank more of water C than of control water (A). The uptake of water D was marginally higher than control water (A). There was no difference in uptake of water B and A. However, a learning effect was observed resulting in increasing amounts of water type C and D taken up over the four consecutive days. A carry-over was not fully prevented as pigs always consumed less during the second hour and water D was consumed less during the fourth and final hourly observation period each day.

Conclusions: The experimental design can be used in future trials for evaluation of the water uptake and preference of water additives for pigs. The tested commercial organic acid additives did not adversely affect water uptake of drinking water, water uptake increased instead.

Electronic supplementary material: The online version of this article (doi:10.1186/s40813-015-0004-z) contains supplementary material, which is available to authorized users.

No MeSH data available.


Photo of the bowl drinker with storage container, used in the experiment
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5382373&req=5

Fig3: Photo of the bowl drinker with storage container, used in the experiment

Mentions: On this farm, water is obtained from the municipal drinking water system, with a small storage tank located centrally on the farm. Normally pigs drink water from two low pressure nipple drinkers per pen. However, each day fifteen minutes before the start of the experiment, water supply from the drinking nipples was stopped. For the experiment pigs had to drink from a round water bowl with storage container (Fig. 3). Four days before commencement of the trial the water bowl was placed in the pen as an additional source of water to get pigs used to the drinker and to prevent confounding by exploratory behaviour and spillage of water during the trial. The water bowl and container were cleaned daily before commencing the experiment.


Water palatability, a matter of taste
Photo of the bowl drinker with storage container, used in the experiment
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5382373&req=5

Fig3: Photo of the bowl drinker with storage container, used in the experiment
Mentions: On this farm, water is obtained from the municipal drinking water system, with a small storage tank located centrally on the farm. Normally pigs drink water from two low pressure nipple drinkers per pen. However, each day fifteen minutes before the start of the experiment, water supply from the drinking nipples was stopped. For the experiment pigs had to drink from a round water bowl with storage container (Fig. 3). Four days before commencement of the trial the water bowl was placed in the pen as an additional source of water to get pigs used to the drinker and to prevent confounding by exploratory behaviour and spillage of water during the trial. The water bowl and container were cleaned daily before commencing the experiment.

View Article: PubMed Central - PubMed

ABSTRACT

Background: The aim of this trial was to test whether the temperature or additives of the drinking water affected water uptake by nursery pigs. We designed a repeated 4 × 4 Latin Square to control for confounding factors such as; carry-over effects, learning of a preferential taste, daily variation within groups and regular increase of uptake over a day due to diurnal drinking patterns. Water types tested were control water (A); warm water (33 °C); (B); organic acid additive 1 (C), and organic acid additive 2 (D).

Results: The piglets drank more of water C than of control water (A). The uptake of water D was marginally higher than control water (A). There was no difference in uptake of water B and A. However, a learning effect was observed resulting in increasing amounts of water type C and D taken up over the four consecutive days. A carry-over was not fully prevented as pigs always consumed less during the second hour and water D was consumed less during the fourth and final hourly observation period each day.

Conclusions: The experimental design can be used in future trials for evaluation of the water uptake and preference of water additives for pigs. The tested commercial organic acid additives did not adversely affect water uptake of drinking water, water uptake increased instead.

Electronic supplementary material: The online version of this article (doi:10.1186/s40813-015-0004-z) contains supplementary material, which is available to authorized users.

No MeSH data available.