Limits...
Molecularly Imprinted Nanomaterials for Sensor Applications

View Article: PubMed Central - PubMed

ABSTRACT

Molecular imprinting is a well-established technology to mimic antibody-antigen interaction in a synthetic platform. Molecularly imprinted polymers and nanomaterials usually possess outstanding recognition capabilities. Imprinted nanostructured materials are characterized by their small sizes, large reactive surface area and, most importantly, with rapid and specific analysis of analytes due to the formation of template driven recognition cavities within the matrix. The excellent recognition and selectivity offered by this class of materials towards a target analyte have found applications in many areas, such as separation science, analysis of organic pollutants in water, environmental analysis of trace gases, chemical or biological sensors, biochemical assays, fabricating artificial receptors, nanotechnology, etc. We present here a concise overview and recent developments in nanostructured imprinted materials with respect to various sensor systems, e.g., electrochemical, optical and mass sensitive, etc. Finally, in light of recent studies, we conclude the article with future perspectives and foreseen applications of imprinted nanomaterials in chemical sensors.

No MeSH data available.


Current responses of the chlortetracycline-imprinted and non-imprinted polymer (NIP) for different analytes, adopted from [65].
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5304596&req=5

nanomaterials-03-00615-f004: Current responses of the chlortetracycline-imprinted and non-imprinted polymer (NIP) for different analytes, adopted from [65].

Mentions: Gam-Derouich et al. [63] fabricated a highly sensitive electrochemical sensor for dopamine by immobilizing Au-NPs on a gold electrode using mercaptobenzene diazonium salt as a coupling agent. MIP film developed by photo-polymerization resulted in a highly specific and selective recognition of dopamine with a detection limit down to 0.35 nmol L−1. This enhanced sensitivity was attributed to the large surface area along with the catalytic effects of Imp-NPs [63]. Dopamine detection was also reported by Kan et al. [64]: a sensor for dopamine was made by using a composite of MWCNTs with dopamine imprinted polymer on a glassy carbon electrode. The sensor achieved equilibrium in 30 min and showed remarkable sensitivity and selectivity, with a linear response range of 5.0 × 10−7 to 2.0 × 10−4 M [64]. An electrochemical sensor based on a composite of β-cyclodextrin-MWCNTs and Au-NPs polyamide amine dendrimer nanocomposites was developed for selective determination of chlortetracycline (CTC). The sensor was fabricated by modifying a gold electrode with the above-mentioned composites with high selectivity and stability towards the target analyte. The sensor exhibited a detection range from 9.0 × 10−8 to 5.0 × 10−5 mol L−1 and a detection limit of 4.954 × 10−8 mol L−1. The selectivity trend for CTC in the presence of interfering species of the same concentration is shown in the Figure 4 [65].


Molecularly Imprinted Nanomaterials for Sensor Applications
Current responses of the chlortetracycline-imprinted and non-imprinted polymer (NIP) for different analytes, adopted from [65].
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5304596&req=5

nanomaterials-03-00615-f004: Current responses of the chlortetracycline-imprinted and non-imprinted polymer (NIP) for different analytes, adopted from [65].
Mentions: Gam-Derouich et al. [63] fabricated a highly sensitive electrochemical sensor for dopamine by immobilizing Au-NPs on a gold electrode using mercaptobenzene diazonium salt as a coupling agent. MIP film developed by photo-polymerization resulted in a highly specific and selective recognition of dopamine with a detection limit down to 0.35 nmol L−1. This enhanced sensitivity was attributed to the large surface area along with the catalytic effects of Imp-NPs [63]. Dopamine detection was also reported by Kan et al. [64]: a sensor for dopamine was made by using a composite of MWCNTs with dopamine imprinted polymer on a glassy carbon electrode. The sensor achieved equilibrium in 30 min and showed remarkable sensitivity and selectivity, with a linear response range of 5.0 × 10−7 to 2.0 × 10−4 M [64]. An electrochemical sensor based on a composite of β-cyclodextrin-MWCNTs and Au-NPs polyamide amine dendrimer nanocomposites was developed for selective determination of chlortetracycline (CTC). The sensor was fabricated by modifying a gold electrode with the above-mentioned composites with high selectivity and stability towards the target analyte. The sensor exhibited a detection range from 9.0 × 10−8 to 5.0 × 10−5 mol L−1 and a detection limit of 4.954 × 10−8 mol L−1. The selectivity trend for CTC in the presence of interfering species of the same concentration is shown in the Figure 4 [65].

View Article: PubMed Central - PubMed

ABSTRACT

Molecular imprinting is a well-established technology to mimic antibody-antigen interaction in a synthetic platform. Molecularly imprinted polymers and nanomaterials usually possess outstanding recognition capabilities. Imprinted nanostructured materials are characterized by their small sizes, large reactive surface area and, most importantly, with rapid and specific analysis of analytes due to the formation of template driven recognition cavities within the matrix. The excellent recognition and selectivity offered by this class of materials towards a target analyte have found applications in many areas, such as separation science, analysis of organic pollutants in water, environmental analysis of trace gases, chemical or biological sensors, biochemical assays, fabricating artificial receptors, nanotechnology, etc. We present here a concise overview and recent developments in nanostructured imprinted materials with respect to various sensor systems, e.g., electrochemical, optical and mass sensitive, etc. Finally, in light of recent studies, we conclude the article with future perspectives and foreseen applications of imprinted nanomaterials in chemical sensors.

No MeSH data available.