Limits...
Aqueous Chemical Solution Deposition of Novel, Thick and Dense Lattice-Matched Single Buffer Layers Suitable for YBCO Coated Conductors: Preparation and Characterization

View Article: PubMed Central - PubMed

ABSTRACT

In this work we present the preparation and characterization of cerium doped lanthanum zirconate (LCZO) films and non-stoichiometric lanthanum zirconate (LZO) buffer layers on metallic Ni-5% W substrates using chemical solution deposition (CSD), starting from aqueous precursor solutions. La2Zr2O7 films doped with varying percentages of Ce at constant La concentration (La0.5CexZr1−xOy) were prepared as well as non-stoichiometric La0.5+xZr0.5−xOy buffer layers with different percentages of La and Zr ratios. The variation in the composition of these thin films enables the creation of novel buffer layers with tailored lattice parameters. This leads to different lattice mismatches with the YBa2Cu3O7−x (YBCO) superconducting layer on top and with the buffer layers or substrate underneath. This possibility of minimized lattice mismatch should allow the use of one single buffer layer instead of the current complicated buffer architectures such as Ni-(5% W)/LZO/LZO/CeO2. Here, single, crack-free LCZO and non-stoichiometric LZO layers with thicknesses of up to 140 nm could be obtained in one single CSD step. The crystallinity and microstructure of these layers were studied by XRD, and SEM and the effective buffer layer action was studied using XPS depth profiling.

No MeSH data available.


XPS overview spectrum of the various elements through the La0.50Ce0.40Zr0.10Oy layer.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5304583&req=5

nanomaterials-02-00298-f006: XPS overview spectrum of the various elements through the La0.50Ce0.40Zr0.10Oy layer.

Mentions: From Figure 6a, it can be seen that, the C is seen more prominently in the top layer. The La peaks shift through the layer, which can be attributed to the varying oxygen and hence the state of La which is shifting through the layer (Figure 6b). The similar argument holds for Ce and Zr peaks in Figure 6c,d. The Ni peak is clearly seen to rise with decreasing La, Ce and Zr concentrations with the increasing sputtering time (Figure 6e). Figure 6f shows that oxygen is predominantly seen until the buffer layers are seen and decreases constantly as the Ni peak rises.


Aqueous Chemical Solution Deposition of Novel, Thick and Dense Lattice-Matched Single Buffer Layers Suitable for YBCO Coated Conductors: Preparation and Characterization
XPS overview spectrum of the various elements through the La0.50Ce0.40Zr0.10Oy layer.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5304583&req=5

nanomaterials-02-00298-f006: XPS overview spectrum of the various elements through the La0.50Ce0.40Zr0.10Oy layer.
Mentions: From Figure 6a, it can be seen that, the C is seen more prominently in the top layer. The La peaks shift through the layer, which can be attributed to the varying oxygen and hence the state of La which is shifting through the layer (Figure 6b). The similar argument holds for Ce and Zr peaks in Figure 6c,d. The Ni peak is clearly seen to rise with decreasing La, Ce and Zr concentrations with the increasing sputtering time (Figure 6e). Figure 6f shows that oxygen is predominantly seen until the buffer layers are seen and decreases constantly as the Ni peak rises.

View Article: PubMed Central - PubMed

ABSTRACT

In this work we present the preparation and characterization of cerium doped lanthanum zirconate (LCZO) films and non-stoichiometric lanthanum zirconate (LZO) buffer layers on metallic Ni-5% W substrates using chemical solution deposition (CSD), starting from aqueous precursor solutions. La2Zr2O7 films doped with varying percentages of Ce at constant La concentration (La0.5CexZr1−xOy) were prepared as well as non-stoichiometric La0.5+xZr0.5−xOy buffer layers with different percentages of La and Zr ratios. The variation in the composition of these thin films enables the creation of novel buffer layers with tailored lattice parameters. This leads to different lattice mismatches with the YBa2Cu3O7−x (YBCO) superconducting layer on top and with the buffer layers or substrate underneath. This possibility of minimized lattice mismatch should allow the use of one single buffer layer instead of the current complicated buffer architectures such as Ni-(5% W)/LZO/LZO/CeO2. Here, single, crack-free LCZO and non-stoichiometric LZO layers with thicknesses of up to 140 nm could be obtained in one single CSD step. The crystallinity and microstructure of these layers were studied by XRD, and SEM and the effective buffer layer action was studied using XPS depth profiling.

No MeSH data available.