Limits...
Changes in protein expression after treatment with Ancylostoma caninum excretory/secretory products in a mouse model of colitis

View Article: PubMed Central - PubMed

ABSTRACT

Different reports have highlighted the potential use of helminths and their secretions in the treatment of inflammatory bowel disease (IBD) conditions; however, no reports have investigated their effects at a proteome level. Herein, we characterise the protein expression changes that occur in lamina propria (LP) and the intestinal epithelial cells (IEC) of mice with dextran sulfate sodium (DSS)-induced colitis treated with Ancylostoma caninum excretory/secretory (ES) products using a quantitative proteomic approach. We have shown how parasite products can significantly alter the expression of proteins involved in immune responses, cell death and with an antioxidant activity. Interestingly, significant changes in the expression levels of different mucins were observed in this study. MUC13, a mucin implicated in gastrointestinal homeostasis, was upregulated in the LP of mice with DSS-induced colitis treated with ES, while MUC2, a major component of mucus, was upregulated in the IEC. In addition, A. caninum proteins have an important effect on proteins with antioxidant functions and proteins involved in intestinal homeostasis and tissue integrity and regeneration. Understanding how parasites can ameliorate IBD pathogenesis can help us design novel treatments for autoimmune diseases.

No MeSH data available.


Effect of different doses of Ancylostoma caninum excretory/secretory (ES) proteins treatment on the expression of proteins.Number of proteins with a significantly changed expression (A), dot plot showing the expression changes of individual proteins (B) and average log2 fold-change of proteins with a significantly regulated expression (C).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5304188&req=5

f1: Effect of different doses of Ancylostoma caninum excretory/secretory (ES) proteins treatment on the expression of proteins.Number of proteins with a significantly changed expression (A), dot plot showing the expression changes of individual proteins (B) and average log2 fold-change of proteins with a significantly regulated expression (C).

Mentions: Quantitative MS/MS analysis of proteins purified from the intestinal tissue of three biological replicates of treated and naïve mice yielded a total of 73,206 spectra representing 834 unique proteins (Supplementary Table 1). The effect of ES treatment on protein expression levels in the intestine of DSS-treated mice versus naïve (untreated control animals) was assessed by comparing the iTRAQ ratios of the identified proteins. After quantitative analysis, a total of 173 proteins showed significantly altered regulation after DSS or DSS+ES treatment (P < 0.05) (Supplementary Table 2). The number of proteins with a significantly up- or down-regulated expression, their individual expression changes and log2 fold-changes in DSS and DSS+ES exposed groups, relative to the naïve controls, are shown in Fig. 1A–C. DSS had a significant (P < 0.05) effect on the expression of 66 proteins, and the expression level of 25 of these proteins was reversed after treatment with 10 μg of ES (Supplementary Table 3, Supplementary Figure 1). Expression changes in individual proteins show a non-significant trend towards zero on the expression levels with increasing doses of A. caninum ES up to 10 μg, after which there was again an increase in expression ratios after treatment with 25 μg of ES (Fig. 1B,C). Mice given 10 μg of ES also had the smallest number of proteins with significantly altered expression (156 proteins among the 3 replicates) relative to the naïve group. In addition, 25 μg of ES had a great effect on proteins not previously altered by the DSS, in comparison with 1, 5 and 10 μg of ES (Supplementary Figure 2). 10 μg of ES was used in further experiments on the LP and IEC intestinal layers.


Changes in protein expression after treatment with Ancylostoma caninum excretory/secretory products in a mouse model of colitis
Effect of different doses of Ancylostoma caninum excretory/secretory (ES) proteins treatment on the expression of proteins.Number of proteins with a significantly changed expression (A), dot plot showing the expression changes of individual proteins (B) and average log2 fold-change of proteins with a significantly regulated expression (C).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5304188&req=5

f1: Effect of different doses of Ancylostoma caninum excretory/secretory (ES) proteins treatment on the expression of proteins.Number of proteins with a significantly changed expression (A), dot plot showing the expression changes of individual proteins (B) and average log2 fold-change of proteins with a significantly regulated expression (C).
Mentions: Quantitative MS/MS analysis of proteins purified from the intestinal tissue of three biological replicates of treated and naïve mice yielded a total of 73,206 spectra representing 834 unique proteins (Supplementary Table 1). The effect of ES treatment on protein expression levels in the intestine of DSS-treated mice versus naïve (untreated control animals) was assessed by comparing the iTRAQ ratios of the identified proteins. After quantitative analysis, a total of 173 proteins showed significantly altered regulation after DSS or DSS+ES treatment (P < 0.05) (Supplementary Table 2). The number of proteins with a significantly up- or down-regulated expression, their individual expression changes and log2 fold-changes in DSS and DSS+ES exposed groups, relative to the naïve controls, are shown in Fig. 1A–C. DSS had a significant (P < 0.05) effect on the expression of 66 proteins, and the expression level of 25 of these proteins was reversed after treatment with 10 μg of ES (Supplementary Table 3, Supplementary Figure 1). Expression changes in individual proteins show a non-significant trend towards zero on the expression levels with increasing doses of A. caninum ES up to 10 μg, after which there was again an increase in expression ratios after treatment with 25 μg of ES (Fig. 1B,C). Mice given 10 μg of ES also had the smallest number of proteins with significantly altered expression (156 proteins among the 3 replicates) relative to the naïve group. In addition, 25 μg of ES had a great effect on proteins not previously altered by the DSS, in comparison with 1, 5 and 10 μg of ES (Supplementary Figure 2). 10 μg of ES was used in further experiments on the LP and IEC intestinal layers.

View Article: PubMed Central - PubMed

ABSTRACT

Different reports have highlighted the potential use of helminths and their secretions in the treatment of inflammatory bowel disease (IBD) conditions; however, no reports have investigated their effects at a proteome level. Herein, we characterise the protein expression changes that occur in lamina propria (LP) and the intestinal epithelial cells (IEC) of mice with dextran sulfate sodium (DSS)-induced colitis treated with Ancylostoma caninum excretory/secretory (ES) products using a quantitative proteomic approach. We have shown how parasite products can significantly alter the expression of proteins involved in immune responses, cell death and with an antioxidant activity. Interestingly, significant changes in the expression levels of different mucins were observed in this study. MUC13, a mucin implicated in gastrointestinal homeostasis, was upregulated in the LP of mice with DSS-induced colitis treated with ES, while MUC2, a major component of mucus, was upregulated in the IEC. In addition, A. caninum proteins have an important effect on proteins with antioxidant functions and proteins involved in intestinal homeostasis and tissue integrity and regeneration. Understanding how parasites can ameliorate IBD pathogenesis can help us design novel treatments for autoimmune diseases.

No MeSH data available.