Limits...
Meteotsunamis in the Laurentian Great Lakes

View Article: PubMed Central - PubMed

ABSTRACT

The generation mechanism of meteotsunamis, which are meteorologically induced water waves with spatial/temporal characteristics and behavior similar to seismic tsunamis, is poorly understood. We quantify meteotsunamis in terms of seasonality, causes, and occurrence frequency through the analysis of long-term water level records in the Laurentian Great Lakes. The majority of the observed meteotsunamis happen from late-spring to mid-summer and are associated primarily with convective storms. Meteotsunami events of potentially dangerous magnitude (height > 0.3 m) occur an average of 106 times per year throughout the region. These results reveal that meteotsunamis are much more frequent than follow from historic anecdotal reports. Future climate scenarios over the United States show a likely increase in the number of days favorable to severe convective storm formation over the Great Lakes, particularly in the spring season. This would suggest that the convectively associated meteotsunamis in these regions may experience an increase in occurrence frequency or a temporal shift in occurrence to earlier in the warm season. To date, meteotsunamis in the area of the Great Lakes have been an overlooked hazard.

No MeSH data available.


Monthly time of meteotsunami occurrence.(a)–(e) Monthly distributions of meteotsunamis observed in each lake and (f) for all lakes combined.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5121654&req=5

f4: Monthly time of meteotsunami occurrence.(a)–(e) Monthly distributions of meteotsunamis observed in each lake and (f) for all lakes combined.

Mentions: To estimate when meteotsunamis are most likely to arise, monthly and annual distributions of meteotsunamis have been computed. The peak time of meteotsunami events within the year is calculated as the circular mean month of the observed events. Figure 4a–f shows the monthly distribution of meteotsunamis in the Great Lakes. Lakes Michigan and Huron have similar annual monthly distributions, with a circular mean month of occurrence of 5.5 and 5.4 months, respectively. Meteotsunami season in Lake Ontario is earlier in the spring (4.7 months), whereas Lake Superior (6.2 months) meteotsunamis appear slightly later in the summer. Interestingly, Lake Erie, by far the shallowest Great Lake, exhibits a prolonged meteotsunami season that extends from late spring to late fall, with a late summer circular mean month of occurrence (7.9 months). Aggregated throughout the entire region (Fig. 4f), meteotsunami occurrences rise sharply in April, reach a maximum in May, and gradually decrease in frequency until October, yielding a circular mean month of meteotsunami occurrence in late May (circular mean of 5.8 months). The annual distribution of meteotsunami events per station operating in a given year is illustrated in Fig. 5, with a five-year moving average of annual occurrence also plotted to visualize longer-term trends. For the Great Lakes as a whole, there is a bimodal distribution in annual occurrences with local maxima in five-year moving average at 2000 and 2012 and a local minimum at 2007. Further study of the observed oscillatory pattern in annual occurrence may provide insight into the role of large-scale climate processes on meteotsunami occurrence.


Meteotsunamis in the Laurentian Great Lakes
Monthly time of meteotsunami occurrence.(a)–(e) Monthly distributions of meteotsunamis observed in each lake and (f) for all lakes combined.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5121654&req=5

f4: Monthly time of meteotsunami occurrence.(a)–(e) Monthly distributions of meteotsunamis observed in each lake and (f) for all lakes combined.
Mentions: To estimate when meteotsunamis are most likely to arise, monthly and annual distributions of meteotsunamis have been computed. The peak time of meteotsunami events within the year is calculated as the circular mean month of the observed events. Figure 4a–f shows the monthly distribution of meteotsunamis in the Great Lakes. Lakes Michigan and Huron have similar annual monthly distributions, with a circular mean month of occurrence of 5.5 and 5.4 months, respectively. Meteotsunami season in Lake Ontario is earlier in the spring (4.7 months), whereas Lake Superior (6.2 months) meteotsunamis appear slightly later in the summer. Interestingly, Lake Erie, by far the shallowest Great Lake, exhibits a prolonged meteotsunami season that extends from late spring to late fall, with a late summer circular mean month of occurrence (7.9 months). Aggregated throughout the entire region (Fig. 4f), meteotsunami occurrences rise sharply in April, reach a maximum in May, and gradually decrease in frequency until October, yielding a circular mean month of meteotsunami occurrence in late May (circular mean of 5.8 months). The annual distribution of meteotsunami events per station operating in a given year is illustrated in Fig. 5, with a five-year moving average of annual occurrence also plotted to visualize longer-term trends. For the Great Lakes as a whole, there is a bimodal distribution in annual occurrences with local maxima in five-year moving average at 2000 and 2012 and a local minimum at 2007. Further study of the observed oscillatory pattern in annual occurrence may provide insight into the role of large-scale climate processes on meteotsunami occurrence.

View Article: PubMed Central - PubMed

ABSTRACT

The generation mechanism of meteotsunamis, which are meteorologically induced water waves with spatial/temporal characteristics and behavior similar to seismic tsunamis, is poorly understood. We quantify meteotsunamis in terms of seasonality, causes, and occurrence frequency through the analysis of long-term water level records in the Laurentian Great Lakes. The majority of the observed meteotsunamis happen from late-spring to mid-summer and are associated primarily with convective storms. Meteotsunami events of potentially dangerous magnitude (height > 0.3 m) occur an average of 106 times per year throughout the region. These results reveal that meteotsunamis are much more frequent than follow from historic anecdotal reports. Future climate scenarios over the United States show a likely increase in the number of days favorable to severe convective storm formation over the Great Lakes, particularly in the spring season. This would suggest that the convectively associated meteotsunamis in these regions may experience an increase in occurrence frequency or a temporal shift in occurrence to earlier in the warm season. To date, meteotsunamis in the area of the Great Lakes have been an overlooked hazard.

No MeSH data available.