Limits...
Ultra-wideband filtering of spoof surface plasmon polaritons using deep subwavelength planar structures

View Article: PubMed Central - PubMed

ABSTRACT

Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than −10 dB within the −3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems.

No MeSH data available.


Measured and simulated S-parameters of the presented SPPs filter with the exponential curve shape parameter of (a) n = 1 and (b) n = 3.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5121608&req=5

f6: Measured and simulated S-parameters of the presented SPPs filter with the exponential curve shape parameter of (a) n = 1 and (b) n = 3.

Mentions: In order to verify the design and simulation, we fabricate the above spoof SPPs filter by traditional PCB printing method, as illustrated in Fig. 5. The production geometry parameters are the same as the optimal parameters in simulation. Two samples with the exponential curve parameter n = 1 and n = 3 were synthesized for comparison. The S-parameter of the synthesized filter was measured by Agilent vector network analyzer (VNA, N5230C). The measured and simulated results of the S-parameters, including the reflection coefficients S11 and transmission coefficients S21, are illustrated in Fig. 6. It is obvious that there is a good agreement between the measured and simulated S-parameters, especially for the two S21 curves. Moreover, the measured S21 parameter is even better than the simulated one at lower frequencies. The measured S11 parameter, however, is worse than the simulated one, which can be ascribed to the impedance mismatch at two welding end points. The transmission coefficient S21 indicates good frequency-selective property of the proposed structure with the transmission loss being low and companied by a transmission zero at 0.21 GHz, which helps to suppress the low-frequency interference. The reflection coefficient S11 of the n = 3 sample is much better than that of the n = 1 sample, which is in good agreement with the simulated result in Fig. 4. In the whole pass band from 1.21 GHz to 7.21 GHz, the S11 parameter of the n = 3 sample is less than −11.2 dB, which manifests the good impedance and momentum matching behavior from the CPW waveguide to the SPPs waveguide through the presented exponential curve ground.


Ultra-wideband filtering of spoof surface plasmon polaritons using deep subwavelength planar structures
Measured and simulated S-parameters of the presented SPPs filter with the exponential curve shape parameter of (a) n = 1 and (b) n = 3.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5121608&req=5

f6: Measured and simulated S-parameters of the presented SPPs filter with the exponential curve shape parameter of (a) n = 1 and (b) n = 3.
Mentions: In order to verify the design and simulation, we fabricate the above spoof SPPs filter by traditional PCB printing method, as illustrated in Fig. 5. The production geometry parameters are the same as the optimal parameters in simulation. Two samples with the exponential curve parameter n = 1 and n = 3 were synthesized for comparison. The S-parameter of the synthesized filter was measured by Agilent vector network analyzer (VNA, N5230C). The measured and simulated results of the S-parameters, including the reflection coefficients S11 and transmission coefficients S21, are illustrated in Fig. 6. It is obvious that there is a good agreement between the measured and simulated S-parameters, especially for the two S21 curves. Moreover, the measured S21 parameter is even better than the simulated one at lower frequencies. The measured S11 parameter, however, is worse than the simulated one, which can be ascribed to the impedance mismatch at two welding end points. The transmission coefficient S21 indicates good frequency-selective property of the proposed structure with the transmission loss being low and companied by a transmission zero at 0.21 GHz, which helps to suppress the low-frequency interference. The reflection coefficient S11 of the n = 3 sample is much better than that of the n = 1 sample, which is in good agreement with the simulated result in Fig. 4. In the whole pass band from 1.21 GHz to 7.21 GHz, the S11 parameter of the n = 3 sample is less than −11.2 dB, which manifests the good impedance and momentum matching behavior from the CPW waveguide to the SPPs waveguide through the presented exponential curve ground.

View Article: PubMed Central - PubMed

ABSTRACT

Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than −10 dB within the −3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems.

No MeSH data available.