Limits...
Authenticity screening of stained glass windows using optical spectroscopy

View Article: PubMed Central - PubMed

ABSTRACT

Civilized societies should safeguard their heritage as it plays an important role in community building. Moreover, past technologies often inspire new technology. Authenticity is besides conservation and restoration a key aspect in preserving our past, for example in museums when exposing showpieces. The classification of being authentic relies on an interdisciplinary approach integrating art historical and archaeological research complemented with applied research. In recent decades analytical dating tools are based on determining the raw materials used. However, the traditional applied non-portable, chemical techniques are destructive and time-consuming. Since museums oftentimes only consent to research actions which are completely non-destructive, optical spectroscopy might offer a solution. As a case-study we apply this technique on two stained glass panels for which the 14th century dating is nowadays questioned. With this research we were able to identify how simultaneous mapping of spectral signatures measured with a low cost optical spectrum analyser unveils information regarding the production period. The significance of this research extends beyond the re-dating of these panels to the 19th century as it provides an instant tool enabling immediate answering authenticity questions during the conservation process of stained glass, thereby providing the necessary data for solving deontological questions about heritage preservation.

No MeSH data available.


Related in: MedlinePlus

The FWHM-R correlation for the red flashed glasses is clearly visible.The slope of the trend-line depends on the glass matrix. All samples taken from the two panels fit to the soda-rich material.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5121600&req=5

f6: The FWHM-R correlation for the red flashed glasses is clearly visible.The slope of the trend-line depends on the glass matrix. All samples taken from the two panels fit to the soda-rich material.

Mentions: The position and shape of the SPR band depends on the structure and distribution of the clusters as well as on the dielectric functions of the metal- and the glass matrix and the annealing temperature. From Manikandan’s research33 we know that in case of copper nanoparticles in soda lime glasses there is a blue shift of the SPR wavelength and a decrease in particle size (FWHM increases) with increasing annealing temperature. These findings were in agreement with the research of Kreibig and Vollmer7. In an attempt to gather more information on the production technique and period, we compared these values with the dispersion properties and quantum dot sizes of all other red copper fragments studied by our research group in the past decade. Despite the limited number of studied fragments some conclusions can be drawn when plotting the nanoparticles radii R as a function of the FWHM values (Fig. 6). The correlation between both parameters is clearly visible and highlighted by plotting trend lines. A difference in slope is observed for the potash, HLLA and soda glasses. We consider two groups of HLLA material (see Supplementary Table 2) classified mainly on differences in alkali metal concentration levels. All the samples taken from the two panels fit to the FWHM-R trend line of the soda rich material. Both groups also have matching SPR peak position values (Supplementary Table 1). However, the latter is not conclusive; the SPR values of the soda rich material are blue shifted compared to the HLLA material but have quantitative similar values as the potash fragments.


Authenticity screening of stained glass windows using optical spectroscopy
The FWHM-R correlation for the red flashed glasses is clearly visible.The slope of the trend-line depends on the glass matrix. All samples taken from the two panels fit to the soda-rich material.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5121600&req=5

f6: The FWHM-R correlation for the red flashed glasses is clearly visible.The slope of the trend-line depends on the glass matrix. All samples taken from the two panels fit to the soda-rich material.
Mentions: The position and shape of the SPR band depends on the structure and distribution of the clusters as well as on the dielectric functions of the metal- and the glass matrix and the annealing temperature. From Manikandan’s research33 we know that in case of copper nanoparticles in soda lime glasses there is a blue shift of the SPR wavelength and a decrease in particle size (FWHM increases) with increasing annealing temperature. These findings were in agreement with the research of Kreibig and Vollmer7. In an attempt to gather more information on the production technique and period, we compared these values with the dispersion properties and quantum dot sizes of all other red copper fragments studied by our research group in the past decade. Despite the limited number of studied fragments some conclusions can be drawn when plotting the nanoparticles radii R as a function of the FWHM values (Fig. 6). The correlation between both parameters is clearly visible and highlighted by plotting trend lines. A difference in slope is observed for the potash, HLLA and soda glasses. We consider two groups of HLLA material (see Supplementary Table 2) classified mainly on differences in alkali metal concentration levels. All the samples taken from the two panels fit to the FWHM-R trend line of the soda rich material. Both groups also have matching SPR peak position values (Supplementary Table 1). However, the latter is not conclusive; the SPR values of the soda rich material are blue shifted compared to the HLLA material but have quantitative similar values as the potash fragments.

View Article: PubMed Central - PubMed

ABSTRACT

Civilized societies should safeguard their heritage as it plays an important role in community building. Moreover, past technologies often inspire new technology. Authenticity is besides conservation and restoration a key aspect in preserving our past, for example in museums when exposing showpieces. The classification of being authentic relies on an interdisciplinary approach integrating art historical and archaeological research complemented with applied research. In recent decades analytical dating tools are based on determining the raw materials used. However, the traditional applied non-portable, chemical techniques are destructive and time-consuming. Since museums oftentimes only consent to research actions which are completely non-destructive, optical spectroscopy might offer a solution. As a case-study we apply this technique on two stained glass panels for which the 14th century dating is nowadays questioned. With this research we were able to identify how simultaneous mapping of spectral signatures measured with a low cost optical spectrum analyser unveils information regarding the production period. The significance of this research extends beyond the re-dating of these panels to the 19th century as it provides an instant tool enabling immediate answering authenticity questions during the conservation process of stained glass, thereby providing the necessary data for solving deontological questions about heritage preservation.

No MeSH data available.


Related in: MedlinePlus