Limits...
Fission and fusion scenarios for magnetic microswimmer clusters

View Article: PubMed Central - PubMed

ABSTRACT

Fission and fusion processes of particle clusters occur in many areas of physics and chemistry from subnuclear to astronomic length scales. Here we study fission and fusion of magnetic microswimmer clusters as governed by their hydrodynamic and dipolar interactions. Rich scenarios are found that depend crucially on whether the swimmer is a pusher or a puller. In particular a linear magnetic chain of pullers is stable while a pusher chain shows a cascade of fission (or disassembly) processes as the self-propulsion velocity is increased. Contrarily, magnetic ring clusters show fission for any type of swimmer. Moreover, we find a plethora of possible fusion (or assembly) scenarios if a single swimmer collides with a ringlike cluster and two rings spontaneously collide. Our predictions are obtained by computer simulations and verifiable in experiments on active colloidal Janus particles and magnetotactic bacteria.

No MeSH data available.


Stability of microswimmer rings.Inverse radius of gyration Rg(0)/Rg as a function of self-propulsion velocity v for ring-like clusters with a given number of swimmers: (a) N=3, (b) N=4 and (c) N=5. Insets: (right) close up the the radius of gyration and (left) sketches of the initial configurations.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5121419&req=5

f4: Stability of microswimmer rings.Inverse radius of gyration Rg(0)/Rg as a function of self-propulsion velocity v for ring-like clusters with a given number of swimmers: (a) N=3, (b) N=4 and (c) N=5. Insets: (right) close up the the radius of gyration and (left) sketches of the initial configurations.

Mentions: To study the fission of such a ring-like cluster, we analyse the self-propulsion velocity dependence of the inverse radius of gyration Rg for the final configuration of the cluster, with respect to the initial radius of gyration Rg(0) for a passive cluster, see Fig. 4. The radius of gyration Rg is defined by


Fission and fusion scenarios for magnetic microswimmer clusters
Stability of microswimmer rings.Inverse radius of gyration Rg(0)/Rg as a function of self-propulsion velocity v for ring-like clusters with a given number of swimmers: (a) N=3, (b) N=4 and (c) N=5. Insets: (right) close up the the radius of gyration and (left) sketches of the initial configurations.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5121419&req=5

f4: Stability of microswimmer rings.Inverse radius of gyration Rg(0)/Rg as a function of self-propulsion velocity v for ring-like clusters with a given number of swimmers: (a) N=3, (b) N=4 and (c) N=5. Insets: (right) close up the the radius of gyration and (left) sketches of the initial configurations.
Mentions: To study the fission of such a ring-like cluster, we analyse the self-propulsion velocity dependence of the inverse radius of gyration Rg for the final configuration of the cluster, with respect to the initial radius of gyration Rg(0) for a passive cluster, see Fig. 4. The radius of gyration Rg is defined by

View Article: PubMed Central - PubMed

ABSTRACT

Fission and fusion processes of particle clusters occur in many areas of physics and chemistry from subnuclear to astronomic length scales. Here we study fission and fusion of magnetic microswimmer clusters as governed by their hydrodynamic and dipolar interactions. Rich scenarios are found that depend crucially on whether the swimmer is a pusher or a puller. In particular a linear magnetic chain of pullers is stable while a pusher chain shows a cascade of fission (or disassembly) processes as the self-propulsion velocity is increased. Contrarily, magnetic ring clusters show fission for any type of swimmer. Moreover, we find a plethora of possible fusion (or assembly) scenarios if a single swimmer collides with a ringlike cluster and two rings spontaneously collide. Our predictions are obtained by computer simulations and verifiable in experiments on active colloidal Janus particles and magnetotactic bacteria.

No MeSH data available.