Limits...
Solution-Processed Hybrid Light-Emitting Devices Comprising TiO 2 Nanorods and WO 3 Layers as Carrier-Transporting Layers

View Article: PubMed Central - PubMed

ABSTRACT

The goal of this research is to prepare inverted light-emitting devices with improved performance by combining titanium dioxide (TiO2) nanorods and tungsten trioxide (WO3) layer. TiO2 nanorods with different lengths were established directly on the fluorine-doped tin oxide (FTO) substrates by the hydrothermal method. The prepared TiO2 nanorods with lengths shorter than 200 nm possess transmittance higher than 80% in the visible range. Inverted light-emitting devices with the configuration of FTO/TiO2 nanorods/ionic PF/MEH-PPV/PEDOT:PSS/WO3/Au were constructed. The best device based on 100-nm-height TiO2 nanorods achieved a max brightness of 4493 cd/m2 and current efficiency of 0.66 cd/A, revealing much higher performance compared with those using TiO2 compact layer or nanorods with longer lengths as electron-transporting layers.

No MeSH data available.


XRD patterns of 300-nm-height TiO2 nanorods and 100-nm-thick compact layer
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5121115&req=5

Fig6: XRD patterns of 300-nm-height TiO2 nanorods and 100-nm-thick compact layer

Mentions: The XRD patterns of the 300-nm-height TiO2 nanorods and 100-nm-thick compact layer on FTO substrate is presented in Fig. 6a, which is in good accordance with that of the rutile phase (JCPDS No. 88–1175) [30]. These diffraction peaks are sharp and strong, indicating high-degree crystallization of the prepared TiO2 nanomaterials in this research. The five main diffraction peaks located at 2θ = 36.07°, 41.24°, 54.33°, 62.75°, and 29.3° are assigned to (101), (111), (211), (002), and (112) planes, respectively [30]. The highly intense (101) peak along with the enhanced (002) peak in the nanorods reveals that the rutile crystal grows with (101) plane parallel to the FTO substrate, and the nanorods are oriented along the (002) direction [33]. The diffraction peaks from the FTO substrates are also indicated in Fig. 6. Only two diffraction peaks assigning to (101) and (211) planes can be observed for TiO2 compact layer. The difference in XRD intensity between TiO2 nanorods and compact layer arises from different thickness of the layer. Besides, the mobility of rutile TiO2 nanorods is reported to be 1 cm2/Vs, which is two-order higher than that of TiO2 nanoparticles layer [33, 34]. The higher electron-transporting properties brought by the nanorod form are beneficial for device performance.Fig. 6


Solution-Processed Hybrid Light-Emitting Devices Comprising TiO 2 Nanorods and WO 3 Layers as Carrier-Transporting Layers
XRD patterns of 300-nm-height TiO2 nanorods and 100-nm-thick compact layer
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5121115&req=5

Fig6: XRD patterns of 300-nm-height TiO2 nanorods and 100-nm-thick compact layer
Mentions: The XRD patterns of the 300-nm-height TiO2 nanorods and 100-nm-thick compact layer on FTO substrate is presented in Fig. 6a, which is in good accordance with that of the rutile phase (JCPDS No. 88–1175) [30]. These diffraction peaks are sharp and strong, indicating high-degree crystallization of the prepared TiO2 nanomaterials in this research. The five main diffraction peaks located at 2θ = 36.07°, 41.24°, 54.33°, 62.75°, and 29.3° are assigned to (101), (111), (211), (002), and (112) planes, respectively [30]. The highly intense (101) peak along with the enhanced (002) peak in the nanorods reveals that the rutile crystal grows with (101) plane parallel to the FTO substrate, and the nanorods are oriented along the (002) direction [33]. The diffraction peaks from the FTO substrates are also indicated in Fig. 6. Only two diffraction peaks assigning to (101) and (211) planes can be observed for TiO2 compact layer. The difference in XRD intensity between TiO2 nanorods and compact layer arises from different thickness of the layer. Besides, the mobility of rutile TiO2 nanorods is reported to be 1 cm2/Vs, which is two-order higher than that of TiO2 nanoparticles layer [33, 34]. The higher electron-transporting properties brought by the nanorod form are beneficial for device performance.Fig. 6

View Article: PubMed Central - PubMed

ABSTRACT

The goal of this research is to prepare inverted light-emitting devices with improved performance by combining titanium dioxide (TiO2) nanorods and tungsten trioxide (WO3) layer. TiO2 nanorods with different lengths were established directly on the fluorine-doped tin oxide (FTO) substrates by the hydrothermal method. The prepared TiO2 nanorods with lengths shorter than 200 nm possess transmittance higher than 80% in the visible range. Inverted light-emitting devices with the configuration of FTO/TiO2 nanorods/ionic PF/MEH-PPV/PEDOT:PSS/WO3/Au were constructed. The best device based on 100-nm-height TiO2 nanorods achieved a max brightness of 4493 cd/m2 and current efficiency of 0.66 cd/A, revealing much higher performance compared with those using TiO2 compact layer or nanorods with longer lengths as electron-transporting layers.

No MeSH data available.