Limits...
Effect of Dispersion Method on Stability and Dielectric Strength of Transformer Oil-Based TiO 2 Nanofluids

View Article: PubMed Central - PubMed

ABSTRACT

Dispersion stability of nanoparticles in the liquid media is of great importance to the utilization in practice. This study aims to investigate the effects of mechanical dispersion method on the dispersibility of functionalized TiO2 nanoparticles in the transformer oil. Dispersion methods, including stirring, ultrasonic bath, and probe processes, were systematically tested to verify their versatility for preparing stable nanofluid. The test results reveal that the combination of ultrasonic bath process and stirring method has the best dispersion efficiency and the obtained nanofluid possesses the highest AC breakdown strength. Specifically, after aging for 168 h, the size of nanoparticles in the nanofluid prepared by the combination method has no obvious change, while those obtained by the other three paths are increased obviously.

No MeSH data available.


Images of dispersion instruments. a Magnetic stirrer. b Ultrasonic bath. c Probe
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5121108&req=5

Fig1: Images of dispersion instruments. a Magnetic stirrer. b Ultrasonic bath. c Probe

Mentions: In order to study the effect of dispersion method on the stability of nanofluid, functionalized TiO2 nanoparticles with the same volume fraction of 0.075% were added into the mineral transformer oil (No. 25 Karamay). After treating for 3 min in ultrasonic bath, the obtained mixture was then divided into 16 parts. The three kinds of dispersion instruments are shown in Fig. 1. The six parts were stirred using a magnetic stirrer for a time range from 10 to 180 min at a rotate speed of 1800 r/m. The other six parts were placed in an ultrasonic bath and treated for the same times as that of stirring method at 20 kHz. Four parts were sonicated by a probe for 10, 20, 30, and 40 min at 20 kHz, respectively. To avoid overheating, the mixtures were ultra-sonicated for every 5 min by a break duration about 1 min.Fig. 1


Effect of Dispersion Method on Stability and Dielectric Strength of Transformer Oil-Based TiO 2 Nanofluids
Images of dispersion instruments. a Magnetic stirrer. b Ultrasonic bath. c Probe
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5121108&req=5

Fig1: Images of dispersion instruments. a Magnetic stirrer. b Ultrasonic bath. c Probe
Mentions: In order to study the effect of dispersion method on the stability of nanofluid, functionalized TiO2 nanoparticles with the same volume fraction of 0.075% were added into the mineral transformer oil (No. 25 Karamay). After treating for 3 min in ultrasonic bath, the obtained mixture was then divided into 16 parts. The three kinds of dispersion instruments are shown in Fig. 1. The six parts were stirred using a magnetic stirrer for a time range from 10 to 180 min at a rotate speed of 1800 r/m. The other six parts were placed in an ultrasonic bath and treated for the same times as that of stirring method at 20 kHz. Four parts were sonicated by a probe for 10, 20, 30, and 40 min at 20 kHz, respectively. To avoid overheating, the mixtures were ultra-sonicated for every 5 min by a break duration about 1 min.Fig. 1

View Article: PubMed Central - PubMed

ABSTRACT

Dispersion stability of nanoparticles in the liquid media is of great importance to the utilization in practice. This study aims to investigate the effects of mechanical dispersion method on the dispersibility of functionalized TiO2 nanoparticles in the transformer oil. Dispersion methods, including stirring, ultrasonic bath, and probe processes, were systematically tested to verify their versatility for preparing stable nanofluid. The test results reveal that the combination of ultrasonic bath process and stirring method has the best dispersion efficiency and the obtained nanofluid possesses the highest AC breakdown strength. Specifically, after aging for 168 h, the size of nanoparticles in the nanofluid prepared by the combination method has no obvious change, while those obtained by the other three paths are increased obviously.

No MeSH data available.