Limits...
Modelling Carbon Emissions in Calluna vulgaris – Dominated Ecosystems when Prescribed Burning and Wildfires Interact

View Article: PubMed Central - PubMed

ABSTRACT

A present challenge in fire ecology is to optimize management techniques so that ecological services are maximized and C emissions minimized. Here, we modeled the effects of different prescribed-burning rotation intervals and wildfires on carbon emissions (present and future) in British moorlands. Biomass-accumulation curves from four Calluna-dominated ecosystems along a north-south gradient in Great Britain were calculated and used within a matrix-model based on Markov Chains to calculate above-ground biomass-loads and annual C emissions under different prescribed-burning rotation intervals. Additionally, we assessed the interaction of these parameters with a decreasing wildfire return intervals. We observed that litter accumulation patterns varied between sites. Northern sites (colder and wetter) accumulated lower amounts of litter with time than southern sites (hotter and drier). The accumulation patterns of the living vegetation dominated by Calluna were determined by site-specific conditions. The optimal prescribed-burning rotation interval for minimizing annual carbon emissions also differed between sites: the optimal rotation interval for northern sites was between 30 and 50 years, whereas for southern sites a hump-backed relationship was found with the optimal interval either between 8 to 10 years or between 30 to 50 years. Increasing wildfire frequency interacted with prescribed-burning rotation intervals by both increasing C emissions and modifying the optimum prescribed-burning interval for minimum C emission. This highlights the importance of studying site-specific biomass accumulation patterns with respect to environmental conditions for identifying suitable fire-rotation intervals to minimize C emissions.

No MeSH data available.


Related in: MedlinePlus

Biomass accumulation curves (solid lines) for the above-ground biomass of (a) Calluna and (b) litter depending on the elapsed time since the last burn and for different sites in Great Britain. Dotted lines indicate the standard deviations of the curves.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5120849&req=5

pone.0167137.g002: Biomass accumulation curves (solid lines) for the above-ground biomass of (a) Calluna and (b) litter depending on the elapsed time since the last burn and for different sites in Great Britain. Dotted lines indicate the standard deviations of the curves.

Mentions: Above-ground biomass accumulation patterns through time since last burn differed between sites (Fig 2A). These differences, however, were not ordered along the north-south gradient. Moor House, one of the sites with colder temperatures and higher precipitation, had the lowest Calluna biomass values, and grew slowly until it reached 20 years after fire with an asymptote around 8 t ha-1. Surprisingly, the two sites at the extremes of the climatic gradient (Kerloch and Dorset) showed intermediate and similar accumulations; growth occurred over the first 20 years until an asymptote around 20 t ha-1was achieved approximately 25 years after fire. These two sites were also those that regenerated more quickly and reached the greatest biomass values quicker after fire. Calluna biomass at Howden, the site ranked as the second warmest and driest (after Dorset) had the greatest biomass, increasing linearly until ca. 35 t ha-1was measured 50 years after fire.


Modelling Carbon Emissions in Calluna vulgaris – Dominated Ecosystems when Prescribed Burning and Wildfires Interact
Biomass accumulation curves (solid lines) for the above-ground biomass of (a) Calluna and (b) litter depending on the elapsed time since the last burn and for different sites in Great Britain. Dotted lines indicate the standard deviations of the curves.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5120849&req=5

pone.0167137.g002: Biomass accumulation curves (solid lines) for the above-ground biomass of (a) Calluna and (b) litter depending on the elapsed time since the last burn and for different sites in Great Britain. Dotted lines indicate the standard deviations of the curves.
Mentions: Above-ground biomass accumulation patterns through time since last burn differed between sites (Fig 2A). These differences, however, were not ordered along the north-south gradient. Moor House, one of the sites with colder temperatures and higher precipitation, had the lowest Calluna biomass values, and grew slowly until it reached 20 years after fire with an asymptote around 8 t ha-1. Surprisingly, the two sites at the extremes of the climatic gradient (Kerloch and Dorset) showed intermediate and similar accumulations; growth occurred over the first 20 years until an asymptote around 20 t ha-1was achieved approximately 25 years after fire. These two sites were also those that regenerated more quickly and reached the greatest biomass values quicker after fire. Calluna biomass at Howden, the site ranked as the second warmest and driest (after Dorset) had the greatest biomass, increasing linearly until ca. 35 t ha-1was measured 50 years after fire.

View Article: PubMed Central - PubMed

ABSTRACT

A present challenge in fire ecology is to optimize management techniques so that ecological services are maximized and C emissions minimized. Here, we modeled the effects of different prescribed-burning rotation intervals and wildfires on carbon emissions (present and future) in British moorlands. Biomass-accumulation curves from four Calluna-dominated ecosystems along a north-south gradient in Great Britain were calculated and used within a matrix-model based on Markov Chains to calculate above-ground biomass-loads and annual C emissions under different prescribed-burning rotation intervals. Additionally, we assessed the interaction of these parameters with a decreasing wildfire return intervals. We observed that litter accumulation patterns varied between sites. Northern sites (colder and wetter) accumulated lower amounts of litter with time than southern sites (hotter and drier). The accumulation patterns of the living vegetation dominated by Calluna were determined by site-specific conditions. The optimal prescribed-burning rotation interval for minimizing annual carbon emissions also differed between sites: the optimal rotation interval for northern sites was between 30 and 50 years, whereas for southern sites a hump-backed relationship was found with the optimal interval either between 8 to 10 years or between 30 to 50 years. Increasing wildfire frequency interacted with prescribed-burning rotation intervals by both increasing C emissions and modifying the optimum prescribed-burning interval for minimum C emission. This highlights the importance of studying site-specific biomass accumulation patterns with respect to environmental conditions for identifying suitable fire-rotation intervals to minimize C emissions.

No MeSH data available.


Related in: MedlinePlus