Limits...
Molecular Analysis of Glucose-6-Phosphate Dehydrogenase Gene Mutations in Bangladeshi Individuals

View Article: PubMed Central - PubMed

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked human enzyme defect of red blood cells (RBCs). Individuals with this gene defect appear normal until exposed to oxidative stress which induces hemolysis. Consumption of certain foods such as fava beans, legumes; infection with bacteria or virus; and use of certain drugs such as primaquine, sulfa drugs etc. may result in lysis of RBCs in G6PD deficient individuals. The genetic defect that causes G6PD deficiency has been identified mostly as single base missense mutations. One hundred and sixty G6PD gene mutations, which lead to amino acid substitutions, have been described worldwide. The purpose of this study was to detect G6PD gene mutations in hospital-based settings in the local population of Dhaka city, Bangladesh. Qualitative fluorescent spot test and quantitative enzyme activity measurement using RANDOX G6PDH kit were performed for analysis of blood specimens and detection of G6PD-deficient participants. For G6PD-deficient samples, PCR was done with six sets of primers specific for G6PD gene. Automated Sanger sequencing of the PCR products was performed to identify the mutations in the gene. Based on fluorescence spot test and quantitative enzyme assay followed by G6PD gene sequencing, 12 specimens (11 males and one female) among 121 clinically suspected patient-specimens were found to be deficient, suggesting a frequency of 9.9% G6PD deficiency. Sequencing of the G6PD-deficient samples revealed c.C131G substitution (exon-3: Ala44Gly) in six samples, c.G487A substitution (exon-6:Gly163Ser) in five samples and c.G949A substitution (exon-9: Glu317Lys) of coding sequence in one sample. These mutations either affect NADP binding or disrupt protein structure. From the study it appears that Ala44Gly and Gly163Ser are the most common G6PD mutations in Dhaka, Bangladesh. This is the first study of G6PD mutations in Bangladesh.

No MeSH data available.


Related in: MedlinePlus

Hemoglobin levels and reticulocyte counts in G6PD non-deficient (ND) and deficient (D) participants.(A) Depicts hemoglobin levels (g/dL), and (B) Demonstrates reticulocyte counts (%) in non-deficient and deficient participants. A p-value < 0.05 was considered statistically significant.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5120827&req=5

pone.0166977.g002: Hemoglobin levels and reticulocyte counts in G6PD non-deficient (ND) and deficient (D) participants.(A) Depicts hemoglobin levels (g/dL), and (B) Demonstrates reticulocyte counts (%) in non-deficient and deficient participants. A p-value < 0.05 was considered statistically significant.

Mentions: G6PD deficiency mostly affects RBCs and this disorder can be life-threatening under conditions of oxidative stress which affect RBC parameters like Hb, reticulocyte etc. To check whether Hb concentrations and reticulocytes counts varied between deficient and non-deficient participants at remission, these parameters were compared for the two groups of participants. Table 3 illustrates demographic parameters for G6PD deficient and G6PD non-deficient participants. The average hemoglobin of 109 non-deficient participants was 16.29 ± 3.16 g/dL [mean ± SD] and ranged from 6.5 g/dL to 22.0 g/dL, whereas 12 G6PD deficient patients had average hemoglobin level 14.84 ± 2.87 g/dL [mean ± SD], ranging from 10 g/dL to 19 g/dL (Table 3). As shown in Fig 2A, there was no significant difference in hemoglobin levels between participants with or without G6PD deficiency (p > 0.05). The reticulocytes counts were in the range of 0.4–3.2% for the study population (Table 3). The proportional range of reticulocytes is considered normal for ages between 3 months to 18 years [18] and our study population fall within this age range. There were no significant differences in reticulocyte counts between deficient (mean ± SD: 1.41 ± 0.73%) and non-deficient (mean ± SD: 1.44 ± 0.56) participants (p > 0.05) (Fig 2B). Thus it can be concluded that when G6PD deficient individuals remain in a state of remission, their Hb levels and reticulocyte counts do not vary significantly from non-deficient individuals.


Molecular Analysis of Glucose-6-Phosphate Dehydrogenase Gene Mutations in Bangladeshi Individuals
Hemoglobin levels and reticulocyte counts in G6PD non-deficient (ND) and deficient (D) participants.(A) Depicts hemoglobin levels (g/dL), and (B) Demonstrates reticulocyte counts (%) in non-deficient and deficient participants. A p-value < 0.05 was considered statistically significant.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5120827&req=5

pone.0166977.g002: Hemoglobin levels and reticulocyte counts in G6PD non-deficient (ND) and deficient (D) participants.(A) Depicts hemoglobin levels (g/dL), and (B) Demonstrates reticulocyte counts (%) in non-deficient and deficient participants. A p-value < 0.05 was considered statistically significant.
Mentions: G6PD deficiency mostly affects RBCs and this disorder can be life-threatening under conditions of oxidative stress which affect RBC parameters like Hb, reticulocyte etc. To check whether Hb concentrations and reticulocytes counts varied between deficient and non-deficient participants at remission, these parameters were compared for the two groups of participants. Table 3 illustrates demographic parameters for G6PD deficient and G6PD non-deficient participants. The average hemoglobin of 109 non-deficient participants was 16.29 ± 3.16 g/dL [mean ± SD] and ranged from 6.5 g/dL to 22.0 g/dL, whereas 12 G6PD deficient patients had average hemoglobin level 14.84 ± 2.87 g/dL [mean ± SD], ranging from 10 g/dL to 19 g/dL (Table 3). As shown in Fig 2A, there was no significant difference in hemoglobin levels between participants with or without G6PD deficiency (p > 0.05). The reticulocytes counts were in the range of 0.4–3.2% for the study population (Table 3). The proportional range of reticulocytes is considered normal for ages between 3 months to 18 years [18] and our study population fall within this age range. There were no significant differences in reticulocyte counts between deficient (mean ± SD: 1.41 ± 0.73%) and non-deficient (mean ± SD: 1.44 ± 0.56) participants (p > 0.05) (Fig 2B). Thus it can be concluded that when G6PD deficient individuals remain in a state of remission, their Hb levels and reticulocyte counts do not vary significantly from non-deficient individuals.

View Article: PubMed Central - PubMed

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked human enzyme defect of red blood cells (RBCs). Individuals with this gene defect appear normal until exposed to oxidative stress which induces hemolysis. Consumption of certain foods such as fava beans, legumes; infection with bacteria or virus; and use of certain drugs such as primaquine, sulfa drugs etc. may result in lysis of RBCs in G6PD deficient individuals. The genetic defect that causes G6PD deficiency has been identified mostly as single base missense mutations. One hundred and sixty G6PD gene mutations, which lead to amino acid substitutions, have been described worldwide. The purpose of this study was to detect G6PD gene mutations in hospital-based settings in the local population of Dhaka city, Bangladesh. Qualitative fluorescent spot test and quantitative enzyme activity measurement using RANDOX G6PDH kit were performed for analysis of blood specimens and detection of G6PD-deficient participants. For G6PD-deficient samples, PCR was done with six sets of primers specific for G6PD gene. Automated Sanger sequencing of the PCR products was performed to identify the mutations in the gene. Based on fluorescence spot test and quantitative enzyme assay followed by G6PD gene sequencing, 12 specimens (11 males and one female) among 121 clinically suspected patient-specimens were found to be deficient, suggesting a frequency of 9.9% G6PD deficiency. Sequencing of the G6PD-deficient samples revealed c.C131G substitution (exon-3: Ala44Gly) in six samples, c.G487A substitution (exon-6:Gly163Ser) in five samples and c.G949A substitution (exon-9: Glu317Lys) of coding sequence in one sample. These mutations either affect NADP binding or disrupt protein structure. From the study it appears that Ala44Gly and Gly163Ser are the most common G6PD mutations in Dhaka, Bangladesh. This is the first study of G6PD mutations in Bangladesh.

No MeSH data available.


Related in: MedlinePlus