Limits...
Effects of Pile Driving on the Residency and Movement of Tagged Reef Fish

View Article: PubMed Central - PubMed

ABSTRACT

The potential effects of pile driving on fish populations and commercial fisheries have received significant attention given the prevalence of pile driving occurring in coastal habitats throughout the world. Behavioral impacts of sound generated from these activities on fish typically have a greater area of influence than physical injury, and may therefore adversely affect a greater portion of the local population. This study used acoustic telemetry to assess the movement, residency, and survival of 15 sheepshead (Archosargus probatocephalus) and 10 grey snapper (Lutjanus griseus) in Port Canaveral, Florida, USA, in response to 35 days of pile driving at a wharf complex. No obvious signs of mortality or injury to tagged fish were evident from the data. Received sound pressure levels from pile strikes on the interior of the wharf, where reef fish primarily occur, were on average 152–157 dB re 1 μPa (peak). No significant decrease in sheepshead daytime residency was observed during pile driving within the central portion of the wharf and area of highest sound exposure, and no major indicators of displacement from the exposure wharf with the onset of pile driving were observed. There was evidence of potential displacement from the exposure wharf that coincided with the start of pile driving observed for 2 out of 4 grey snapper, along with a decrease in daytime residency for a subset of this species with high site fidelity prior to the event. Results indicate that snapper may be more likely to depart an area of pile driving disturbance more readily than sheepshead, but were less at risk for behavioral impact given the lower site fidelity of this species.

No MeSH data available.


Related in: MedlinePlus

Median one-third octave band levels.Data are shown for pile strikes made 10 m from the source (orange), near receiver E4 on the interior of the wharf (purple), and during periods of no pile driving (ambient; green). Shaded regions represent 25th and 75th percentiles.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5120787&req=5

pone.0163638.g002: Median one-third octave band levels.Data are shown for pile strikes made 10 m from the source (orange), near receiver E4 on the interior of the wharf (purple), and during periods of no pile driving (ambient; green). Shaded regions represent 25th and 75th percentiles.

Mentions: The measured mean peak source level determined from 240 strikes total from two piles was 175 ± 4.0 dB re 1 μPa at 10 m (Table 1). The peak energy levels from the pile driving strikes based on recordings of sound pressure were found to be within the 600–1200 Hz range (Fig 2). The ambient one-third octave band levels across the frequency range of interest related to fish hearing (100 Hz– 1000 Hz) are well below the one-third octave band levels for pile driving events at this location (Fig 2).


Effects of Pile Driving on the Residency and Movement of Tagged Reef Fish
Median one-third octave band levels.Data are shown for pile strikes made 10 m from the source (orange), near receiver E4 on the interior of the wharf (purple), and during periods of no pile driving (ambient; green). Shaded regions represent 25th and 75th percentiles.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5120787&req=5

pone.0163638.g002: Median one-third octave band levels.Data are shown for pile strikes made 10 m from the source (orange), near receiver E4 on the interior of the wharf (purple), and during periods of no pile driving (ambient; green). Shaded regions represent 25th and 75th percentiles.
Mentions: The measured mean peak source level determined from 240 strikes total from two piles was 175 ± 4.0 dB re 1 μPa at 10 m (Table 1). The peak energy levels from the pile driving strikes based on recordings of sound pressure were found to be within the 600–1200 Hz range (Fig 2). The ambient one-third octave band levels across the frequency range of interest related to fish hearing (100 Hz– 1000 Hz) are well below the one-third octave band levels for pile driving events at this location (Fig 2).

View Article: PubMed Central - PubMed

ABSTRACT

The potential effects of pile driving on fish populations and commercial fisheries have received significant attention given the prevalence of pile driving occurring in coastal habitats throughout the world. Behavioral impacts of sound generated from these activities on fish typically have a greater area of influence than physical injury, and may therefore adversely affect a greater portion of the local population. This study used acoustic telemetry to assess the movement, residency, and survival of 15 sheepshead (Archosargus probatocephalus) and 10 grey snapper (Lutjanus griseus) in Port Canaveral, Florida, USA, in response to 35 days of pile driving at a wharf complex. No obvious signs of mortality or injury to tagged fish were evident from the data. Received sound pressure levels from pile strikes on the interior of the wharf, where reef fish primarily occur, were on average 152–157 dB re 1 μPa (peak). No significant decrease in sheepshead daytime residency was observed during pile driving within the central portion of the wharf and area of highest sound exposure, and no major indicators of displacement from the exposure wharf with the onset of pile driving were observed. There was evidence of potential displacement from the exposure wharf that coincided with the start of pile driving observed for 2 out of 4 grey snapper, along with a decrease in daytime residency for a subset of this species with high site fidelity prior to the event. Results indicate that snapper may be more likely to depart an area of pile driving disturbance more readily than sheepshead, but were less at risk for behavioral impact given the lower site fidelity of this species.

No MeSH data available.


Related in: MedlinePlus