Limits...
Effects of Pile Driving on the Residency and Movement of Tagged Reef Fish

View Article: PubMed Central - PubMed

ABSTRACT

The potential effects of pile driving on fish populations and commercial fisheries have received significant attention given the prevalence of pile driving occurring in coastal habitats throughout the world. Behavioral impacts of sound generated from these activities on fish typically have a greater area of influence than physical injury, and may therefore adversely affect a greater portion of the local population. This study used acoustic telemetry to assess the movement, residency, and survival of 15 sheepshead (Archosargus probatocephalus) and 10 grey snapper (Lutjanus griseus) in Port Canaveral, Florida, USA, in response to 35 days of pile driving at a wharf complex. No obvious signs of mortality or injury to tagged fish were evident from the data. Received sound pressure levels from pile strikes on the interior of the wharf, where reef fish primarily occur, were on average 152–157 dB re 1 μPa (peak). No significant decrease in sheepshead daytime residency was observed during pile driving within the central portion of the wharf and area of highest sound exposure, and no major indicators of displacement from the exposure wharf with the onset of pile driving were observed. There was evidence of potential displacement from the exposure wharf that coincided with the start of pile driving observed for 2 out of 4 grey snapper, along with a decrease in daytime residency for a subset of this species with high site fidelity prior to the event. Results indicate that snapper may be more likely to depart an area of pile driving disturbance more readily than sheepshead, but were less at risk for behavioral impact given the lower site fidelity of this species.

No MeSH data available.


Related in: MedlinePlus

Port Canaveral study area.A) Regional study area including telemetry receivers in the Florida Atlantic Coast Telemetry Array. B) Port Canaveral Study Area. C) Middle Basin and Poseidon Wharf where pile driving occurred (darker shaded region represents marine waters). Original figure adapted for reuse with permission of Springer from: The Effects of Noise on Aquatic Life II. Volume 875 of the series Advances in Experimental Medicine and Biology pp 479–487. Residency of Reef Fish During Pile Driving Within a Shallow Pierside Environment. Joseph D. Iafrate, Stephanie L. Watwood, Eric A. Reyier, Matthew Gilchrest, Steven E. Crocker. © Springer Science+Business Media New York 2016. Figure was created using ArcGIS® software by Esri. ArcGIS® and ArcMap™ are the intellectual property of Esri and are used herein under license. Copyright © Esri. All rights reserved.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5120787&req=5

pone.0163638.g001: Port Canaveral study area.A) Regional study area including telemetry receivers in the Florida Atlantic Coast Telemetry Array. B) Port Canaveral Study Area. C) Middle Basin and Poseidon Wharf where pile driving occurred (darker shaded region represents marine waters). Original figure adapted for reuse with permission of Springer from: The Effects of Noise on Aquatic Life II. Volume 875 of the series Advances in Experimental Medicine and Biology pp 479–487. Residency of Reef Fish During Pile Driving Within a Shallow Pierside Environment. Joseph D. Iafrate, Stephanie L. Watwood, Eric A. Reyier, Matthew Gilchrest, Steven E. Crocker. © Springer Science+Business Media New York 2016. Figure was created using ArcGIS® software by Esri. ArcGIS® and ArcMap™ are the intellectual property of Esri and are used herein under license. Copyright © Esri. All rights reserved.

Mentions: Port Canaveral is an entirely manmade multi-use harbor that supports cruise ships, cargo and fishing vessels, and military activity. The Port is located in east-central Florida (28.5° N, Fig 1) and is comprised of a main navigation channel running east-west connecting three vessel turning basins, and dredged to a maximum depth of 14 m mean low water. Bottom substrates in the dredged Port Canaveral harbor are fine sediment sand or muddy sand. The West Basin contains several cruise ship terminals, while Poseidon and Trident Wharfs in Middle and Trident Basins, respectively, are managed by the Naval Ordnance Test Unit as a military facility, and therefore are closed to the public. The wharfs are massive structures of similar size at 366 m long by 40 m (Poseidon) and 50 m (Trident) wide supported underneath by multiple rows of large concrete piles providing refuge and forage for reef fish. Open spaces 40 m wide exist along the interior of the wharfs abutting the seawall. The Poseidon (exposure) Wharf was the location of pile driving for this study, while the Trident (control) Wharf served as an adjacent control site. The expansive wharfs and adjacent stone revetments within the Port create valuable hard-bottom habitat which support persistent populations of tropical reef fish species. The target species in particular have strong fidelity to the wharfs and interior open spaces, and were regularly visually observed in this habitat during daytime collection hours. While these fish are regularly exposed to anthropogenic noise from vessel activity within Port Canaveral, events that produce sound at the source levels typical of pile driving are not common. No pile driving occurred in the control basin concurrent with the pile driving along the exposure wharf.


Effects of Pile Driving on the Residency and Movement of Tagged Reef Fish
Port Canaveral study area.A) Regional study area including telemetry receivers in the Florida Atlantic Coast Telemetry Array. B) Port Canaveral Study Area. C) Middle Basin and Poseidon Wharf where pile driving occurred (darker shaded region represents marine waters). Original figure adapted for reuse with permission of Springer from: The Effects of Noise on Aquatic Life II. Volume 875 of the series Advances in Experimental Medicine and Biology pp 479–487. Residency of Reef Fish During Pile Driving Within a Shallow Pierside Environment. Joseph D. Iafrate, Stephanie L. Watwood, Eric A. Reyier, Matthew Gilchrest, Steven E. Crocker. © Springer Science+Business Media New York 2016. Figure was created using ArcGIS® software by Esri. ArcGIS® and ArcMap™ are the intellectual property of Esri and are used herein under license. Copyright © Esri. All rights reserved.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5120787&req=5

pone.0163638.g001: Port Canaveral study area.A) Regional study area including telemetry receivers in the Florida Atlantic Coast Telemetry Array. B) Port Canaveral Study Area. C) Middle Basin and Poseidon Wharf where pile driving occurred (darker shaded region represents marine waters). Original figure adapted for reuse with permission of Springer from: The Effects of Noise on Aquatic Life II. Volume 875 of the series Advances in Experimental Medicine and Biology pp 479–487. Residency of Reef Fish During Pile Driving Within a Shallow Pierside Environment. Joseph D. Iafrate, Stephanie L. Watwood, Eric A. Reyier, Matthew Gilchrest, Steven E. Crocker. © Springer Science+Business Media New York 2016. Figure was created using ArcGIS® software by Esri. ArcGIS® and ArcMap™ are the intellectual property of Esri and are used herein under license. Copyright © Esri. All rights reserved.
Mentions: Port Canaveral is an entirely manmade multi-use harbor that supports cruise ships, cargo and fishing vessels, and military activity. The Port is located in east-central Florida (28.5° N, Fig 1) and is comprised of a main navigation channel running east-west connecting three vessel turning basins, and dredged to a maximum depth of 14 m mean low water. Bottom substrates in the dredged Port Canaveral harbor are fine sediment sand or muddy sand. The West Basin contains several cruise ship terminals, while Poseidon and Trident Wharfs in Middle and Trident Basins, respectively, are managed by the Naval Ordnance Test Unit as a military facility, and therefore are closed to the public. The wharfs are massive structures of similar size at 366 m long by 40 m (Poseidon) and 50 m (Trident) wide supported underneath by multiple rows of large concrete piles providing refuge and forage for reef fish. Open spaces 40 m wide exist along the interior of the wharfs abutting the seawall. The Poseidon (exposure) Wharf was the location of pile driving for this study, while the Trident (control) Wharf served as an adjacent control site. The expansive wharfs and adjacent stone revetments within the Port create valuable hard-bottom habitat which support persistent populations of tropical reef fish species. The target species in particular have strong fidelity to the wharfs and interior open spaces, and were regularly visually observed in this habitat during daytime collection hours. While these fish are regularly exposed to anthropogenic noise from vessel activity within Port Canaveral, events that produce sound at the source levels typical of pile driving are not common. No pile driving occurred in the control basin concurrent with the pile driving along the exposure wharf.

View Article: PubMed Central - PubMed

ABSTRACT

The potential effects of pile driving on fish populations and commercial fisheries have received significant attention given the prevalence of pile driving occurring in coastal habitats throughout the world. Behavioral impacts of sound generated from these activities on fish typically have a greater area of influence than physical injury, and may therefore adversely affect a greater portion of the local population. This study used acoustic telemetry to assess the movement, residency, and survival of 15 sheepshead (Archosargus probatocephalus) and 10 grey snapper (Lutjanus griseus) in Port Canaveral, Florida, USA, in response to 35 days of pile driving at a wharf complex. No obvious signs of mortality or injury to tagged fish were evident from the data. Received sound pressure levels from pile strikes on the interior of the wharf, where reef fish primarily occur, were on average 152–157 dB re 1 μPa (peak). No significant decrease in sheepshead daytime residency was observed during pile driving within the central portion of the wharf and area of highest sound exposure, and no major indicators of displacement from the exposure wharf with the onset of pile driving were observed. There was evidence of potential displacement from the exposure wharf that coincided with the start of pile driving observed for 2 out of 4 grey snapper, along with a decrease in daytime residency for a subset of this species with high site fidelity prior to the event. Results indicate that snapper may be more likely to depart an area of pile driving disturbance more readily than sheepshead, but were less at risk for behavioral impact given the lower site fidelity of this species.

No MeSH data available.


Related in: MedlinePlus