Limits...
Evaluation of polyphenylene ether ether sulfone/nanohydroxyapatite nanofiber composite as a biomaterial for hard tissue replacement

View Article: PubMed Central

ABSTRACT

The present work is aimed at investigating the mechanical and in vitro biological properties of polyphenylene ether ether sulfone (PPEES)/nanohydroxyapatite (nHA) composite fibers. Electrospinning was used to prepare nanofiber composite mats of PPEES/nHA with different weight percentages of the inorganic filler, nHA. The fabricated composites were characterized using Fourier transform infrared spectroscopy (FTIR)-attenuated total reflectance spectroscopy (ATR) and scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX) techniques. The mechanical properties of the composite were studied with a tensile tester. The FTIR-ATR spectrum depicted the functional group as well as the interaction between the PPEES and nHA composite materials; in addition, the elemental groups were identified with EDX analysis. The morphology of the nanofiber composite was studied by SEM. Tensile strength analysis of the PPEES/nHA composite revealed the elastic nature of the nanofiber composite reinforced with nHA and suggested significant mechanical strength of the composite. The biomineralization studies performed using simulated body fluid with increased incubation time showed enhanced mineralization, which showed that the composites possessed high bioactivity property. Cell viability of the nanofiber composite, studied with osteoblast (MG-63) cells, was observed to be higher in the composites containing higher concentrations of nHA.

Electronic supplementary material: The online version of this article (doi:10.1186/2194-0517-2-2) contains supplementary material, which is available to authorized users.

No MeSH data available.


SEM image showing the surface morphology of PPEES and its composites after incubation in SBF. (a) PPEES after 30 days, (b) PPEES 2 after 5 days, (c) PPEES 2 after 15 days, and (d) PPEES 2 after 30 days of incubation in SBF.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5120667&req=5

Fig3: SEM image showing the surface morphology of PPEES and its composites after incubation in SBF. (a) PPEES after 30 days, (b) PPEES 2 after 5 days, (c) PPEES 2 after 15 days, and (d) PPEES 2 after 30 days of incubation in SBF.

Mentions: The surface morphology of mineralized PPEES and PPEES 2 composites are shown in Figure 3. The PPEES nanofiber showed no signs of apatite formation even after 30 days of incubation in SBF (Figure 3a). Comparatively, there was significant apatite layer formation on the composite material containing nHA with respect to the incubation time, implying the vital role of nHA in the bioactivity. In addition, it was perceived that in bioactive ceramics, nHA acted as a nucleation site and enhanced the growth of apatite by utilizing the existing ions in the SBF solution. Moderate increase in density of the minerals on PPEES 2 composite after 5, 15, and 30 days of incubation in SBF solution was evident (Figure 3b–e) due to the presence of nHA, and it clearly elucidated that the increased incubation time improved the enhanced apatite formation.Figure 3


Evaluation of polyphenylene ether ether sulfone/nanohydroxyapatite nanofiber composite as a biomaterial for hard tissue replacement
SEM image showing the surface morphology of PPEES and its composites after incubation in SBF. (a) PPEES after 30 days, (b) PPEES 2 after 5 days, (c) PPEES 2 after 15 days, and (d) PPEES 2 after 30 days of incubation in SBF.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5120667&req=5

Fig3: SEM image showing the surface morphology of PPEES and its composites after incubation in SBF. (a) PPEES after 30 days, (b) PPEES 2 after 5 days, (c) PPEES 2 after 15 days, and (d) PPEES 2 after 30 days of incubation in SBF.
Mentions: The surface morphology of mineralized PPEES and PPEES 2 composites are shown in Figure 3. The PPEES nanofiber showed no signs of apatite formation even after 30 days of incubation in SBF (Figure 3a). Comparatively, there was significant apatite layer formation on the composite material containing nHA with respect to the incubation time, implying the vital role of nHA in the bioactivity. In addition, it was perceived that in bioactive ceramics, nHA acted as a nucleation site and enhanced the growth of apatite by utilizing the existing ions in the SBF solution. Moderate increase in density of the minerals on PPEES 2 composite after 5, 15, and 30 days of incubation in SBF solution was evident (Figure 3b–e) due to the presence of nHA, and it clearly elucidated that the increased incubation time improved the enhanced apatite formation.Figure 3

View Article: PubMed Central

ABSTRACT

The present work is aimed at investigating the mechanical and in vitro biological properties of polyphenylene ether ether sulfone (PPEES)/nanohydroxyapatite (nHA) composite fibers. Electrospinning was used to prepare nanofiber composite mats of PPEES/nHA with different weight percentages of the inorganic filler, nHA. The fabricated composites were characterized using Fourier transform infrared spectroscopy (FTIR)-attenuated total reflectance spectroscopy (ATR) and scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX) techniques. The mechanical properties of the composite were studied with a tensile tester. The FTIR-ATR spectrum depicted the functional group as well as the interaction between the PPEES and nHA composite materials; in addition, the elemental groups were identified with EDX analysis. The morphology of the nanofiber composite was studied by SEM. Tensile strength analysis of the PPEES/nHA composite revealed the elastic nature of the nanofiber composite reinforced with nHA and suggested significant mechanical strength of the composite. The biomineralization studies performed using simulated body fluid with increased incubation time showed enhanced mineralization, which showed that the composites possessed high bioactivity property. Cell viability of the nanofiber composite, studied with osteoblast (MG-63) cells, was observed to be higher in the composites containing higher concentrations of nHA.

Electronic supplementary material: The online version of this article (doi:10.1186/2194-0517-2-2) contains supplementary material, which is available to authorized users.

No MeSH data available.