Geographical predisposition influences on the distribution and tissue characterisation of eccentric coronary plaques in non-branching coronary arteries: cross-sectional study of coronary plaques analysed by intravascular ultrasound
View Article:
PubMed Central - PubMed
ABSTRACT
Background: We investigated the influence of geographical predisposition on the spatial distribution and composition of coronary plaques. Methods: Thirty coronary arteries were evaluated. A total of 1441 cross-sections were collected from intravascular ultrasound (IVUS) and radio-frequency signal-based virtual histology (VH-IVUS) imaging. To exclude complex geographical effects of side branches and to localise the plaque distribution, we analysed only eccentric plaques in non-branching regions. The spatial distribution of eccentric plaques in the coronary artery was classified into myocardial, lateral, and epicardial regions. The composition of eccentric plaques was analysed using VH-IVUS. Results: The plaque was concentric in 723 sections (50.2%) and eccentric in 718 (49.9%). Eccentric plaques were more frequently distributed towards the myocardial side than towards the epicardial side (46.7 ± 7.5% vs. 12.5 ± 4.2%, p = 0.003). No significant difference was observed between the myocardial and lateral sides (46.7 ± 7.5% vs. 20.8 ± 5.0%) or between the lateral and epicardial sides. Eccentric thin-capped fibroatheromas were more frequently distributed towards the myocardial side than towards the lateral side (p = 0.024) or epicardial side (p = 0.005). Conclusion: Geographical predisposition is associated with distribution, tissue characterisation, and vulnerability of plaques in non-branching coronary arteries. No MeSH data available. Related in: MedlinePlus |
![]() Related In:
Results -
Collection
License 1 - License 2 getmorefigures.php?uid=PMC5120430&req=5
Fig3: Distribution of thin-capped fibroatheromas (TCFAs). Of the total TCFAs, 4.19 ± 1.49% were distributed towards the myocardial side, 0.80 ± 0.77% towards the lateral side, and none towards the epicardial side. Data are shown as mean ± SEM. N.S., not significant Mentions: We observed TCFAs significantly more frequently in myocardial side plaques (4.99 ± 1.61%) than in lateral side plaques (0.80 ± 0.77%, p = 0.024) or in epicardial side plaques (0%, p = 0.005) (Fig. 3).Fig. 3 |
View Article: PubMed Central - PubMed
Background: We investigated the influence of geographical predisposition on the spatial distribution and composition of coronary plaques.
Methods: Thirty coronary arteries were evaluated. A total of 1441 cross-sections were collected from intravascular ultrasound (IVUS) and radio-frequency signal-based virtual histology (VH-IVUS) imaging. To exclude complex geographical effects of side branches and to localise the plaque distribution, we analysed only eccentric plaques in non-branching regions. The spatial distribution of eccentric plaques in the coronary artery was classified into myocardial, lateral, and epicardial regions. The composition of eccentric plaques was analysed using VH-IVUS.
Results: The plaque was concentric in 723 sections (50.2%) and eccentric in 718 (49.9%). Eccentric plaques were more frequently distributed towards the myocardial side than towards the epicardial side (46.7 ± 7.5% vs. 12.5 ± 4.2%, p = 0.003). No significant difference was observed between the myocardial and lateral sides (46.7 ± 7.5% vs. 20.8 ± 5.0%) or between the lateral and epicardial sides. Eccentric thin-capped fibroatheromas were more frequently distributed towards the myocardial side than towards the lateral side (p = 0.024) or epicardial side (p = 0.005).
Conclusion: Geographical predisposition is associated with distribution, tissue characterisation, and vulnerability of plaques in non-branching coronary arteries.
No MeSH data available.