Limits...
CD163 macrophage and erythrocyte contents in aspirated deep vein thrombus are associated with the time after onset: a pilot study

View Article: PubMed Central - PubMed

ABSTRACT

Background: Thrombolytic therapy is effective in selected patients with deep vein thrombosis (DVT). Therefore, identification of a marker that reflects the age of thrombus is of particular concern. This pilot study aimed to identify a marker that reflects the time after onset in human aspirated DVT.

Methods: We histologically and immunohistochemically analyzed 16 aspirated thrombi. The times from onset to aspiration ranged from 5 to 60 days (median of 13 days). Paraffin sections were stained with hematoxylin and eosin and antibodies for fibrin, glycophorin A, integrin α2bβ3, macrophage markers (CD68, CD163, and CD206), CD34, and smooth muscle actin (SMA).

Results: All thrombi were immunopositive for glycophorin A, fibrin, integrin α2bβ3, CD68, CD163, and CD206, and contained granulocytes. Almost all of the thrombi had small foci of CD34- or SMA-immunopositive areas. CD68- and CD163-immunopositive cell numbers were positively correlated with the time after onset, while the glycophorin A-immunopositive area was negatively correlated with the time after onset. In double immunohistochemistry, CD163-positive cells existed predominantly among the CD68-immunopositive macrophage population. CD163-positive macrophages were closely localized with glycophorin A, CD34, or SMA-positive cell-rich areas.

Conclusions: These findings indicate that CD163 macrophage and erythrocyte contents could be markers for evaluation of the age of thrombus in DVT. Additionally, CD163 macrophages might play a role in organization of the process of venous thrombus.

Electronic supplementary material: The online version of this article (doi:10.1186/s12959-016-0122-0) contains supplementary material, which is available to authorized users.

No MeSH data available.


Related in: MedlinePlus

Representative macro- and microscopic images of aspirated deep vein thrombi. a. Representative macroscopic image of an aspirated thrombus. The aspirated thrombus is red or mixed red and white. b. Representative image of a fresh thrombus composed of erythrocyte-rich areas, eosinophilic granular or fibrinous areas, and polymorphonuclear or mononuclear leukocytes. Neutrophils are mainly accumulated at the border of the erythrocyte-rich and eosinophilic areas (9 days after onset). c. Representative image of lytic changes, including the loss of cellular morphology, karyolysis, and karyorrhexis (9 days after onset). d. Representative image of macrophage-like cells (60 days after onset). e. Representative image of an organizing reaction showing fibroblastic/myofibroblastic proliferation, leukocytic infiltration, and matrix deposition (33 days after onset). Hematoxylin and eosin stain (b–d)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC5120412&req=5

Fig3: Representative macro- and microscopic images of aspirated deep vein thrombi. a. Representative macroscopic image of an aspirated thrombus. The aspirated thrombus is red or mixed red and white. b. Representative image of a fresh thrombus composed of erythrocyte-rich areas, eosinophilic granular or fibrinous areas, and polymorphonuclear or mononuclear leukocytes. Neutrophils are mainly accumulated at the border of the erythrocyte-rich and eosinophilic areas (9 days after onset). c. Representative image of lytic changes, including the loss of cellular morphology, karyolysis, and karyorrhexis (9 days after onset). d. Representative image of macrophage-like cells (60 days after onset). e. Representative image of an organizing reaction showing fibroblastic/myofibroblastic proliferation, leukocytic infiltration, and matrix deposition (33 days after onset). Hematoxylin and eosin stain (b–d)

Mentions: The aspirated thrombi were red or mixed red and white (Fig. 3a). The thrombi were composed of erythrocyte-rich areas, eosinophilic granular or fibrinous areas, and granulocytes or mononuclear leukocytes (Fig. 3b). Neutrophils were mainly accumulated at the border of erythrocyte-rich areas and eosinophilic granular or fibrinous areas (Fig. 3b). The thrombi showed various degrees of cell lytic change (Fig. 3c) and infiltration of macrophage-like cells in part (Fig. 3d). One half of the thrombi focally exhibited organizing reactions with infiltration of mononuclear leukocytes (Fig. 3e).Fig. 3


CD163 macrophage and erythrocyte contents in aspirated deep vein thrombus are associated with the time after onset: a pilot study
Representative macro- and microscopic images of aspirated deep vein thrombi. a. Representative macroscopic image of an aspirated thrombus. The aspirated thrombus is red or mixed red and white. b. Representative image of a fresh thrombus composed of erythrocyte-rich areas, eosinophilic granular or fibrinous areas, and polymorphonuclear or mononuclear leukocytes. Neutrophils are mainly accumulated at the border of the erythrocyte-rich and eosinophilic areas (9 days after onset). c. Representative image of lytic changes, including the loss of cellular morphology, karyolysis, and karyorrhexis (9 days after onset). d. Representative image of macrophage-like cells (60 days after onset). e. Representative image of an organizing reaction showing fibroblastic/myofibroblastic proliferation, leukocytic infiltration, and matrix deposition (33 days after onset). Hematoxylin and eosin stain (b–d)
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC5120412&req=5

Fig3: Representative macro- and microscopic images of aspirated deep vein thrombi. a. Representative macroscopic image of an aspirated thrombus. The aspirated thrombus is red or mixed red and white. b. Representative image of a fresh thrombus composed of erythrocyte-rich areas, eosinophilic granular or fibrinous areas, and polymorphonuclear or mononuclear leukocytes. Neutrophils are mainly accumulated at the border of the erythrocyte-rich and eosinophilic areas (9 days after onset). c. Representative image of lytic changes, including the loss of cellular morphology, karyolysis, and karyorrhexis (9 days after onset). d. Representative image of macrophage-like cells (60 days after onset). e. Representative image of an organizing reaction showing fibroblastic/myofibroblastic proliferation, leukocytic infiltration, and matrix deposition (33 days after onset). Hematoxylin and eosin stain (b–d)
Mentions: The aspirated thrombi were red or mixed red and white (Fig. 3a). The thrombi were composed of erythrocyte-rich areas, eosinophilic granular or fibrinous areas, and granulocytes or mononuclear leukocytes (Fig. 3b). Neutrophils were mainly accumulated at the border of erythrocyte-rich areas and eosinophilic granular or fibrinous areas (Fig. 3b). The thrombi showed various degrees of cell lytic change (Fig. 3c) and infiltration of macrophage-like cells in part (Fig. 3d). One half of the thrombi focally exhibited organizing reactions with infiltration of mononuclear leukocytes (Fig. 3e).Fig. 3

View Article: PubMed Central - PubMed

ABSTRACT

Background: Thrombolytic therapy is effective in selected patients with deep vein thrombosis (DVT). Therefore, identification of a marker that reflects the age of thrombus is of particular concern. This pilot study aimed to identify a marker that reflects the time after onset in human aspirated DVT.

Methods: We histologically and immunohistochemically analyzed 16 aspirated thrombi. The times from onset to aspiration ranged from 5 to 60 days (median of 13 days). Paraffin sections were stained with hematoxylin and eosin and antibodies for fibrin, glycophorin A, integrin α2bβ3, macrophage markers (CD68, CD163, and CD206), CD34, and smooth muscle actin (SMA).

Results: All thrombi were immunopositive for glycophorin A, fibrin, integrin α2bβ3, CD68, CD163, and CD206, and contained granulocytes. Almost all of the thrombi had small foci of CD34- or SMA-immunopositive areas. CD68- and CD163-immunopositive cell numbers were positively correlated with the time after onset, while the glycophorin A-immunopositive area was negatively correlated with the time after onset. In double immunohistochemistry, CD163-positive cells existed predominantly among the CD68-immunopositive macrophage population. CD163-positive macrophages were closely localized with glycophorin A, CD34, or SMA-positive cell-rich areas.

Conclusions: These findings indicate that CD163 macrophage and erythrocyte contents could be markers for evaluation of the age of thrombus in DVT. Additionally, CD163 macrophages might play a role in organization of the process of venous thrombus.

Electronic supplementary material: The online version of this article (doi:10.1186/s12959-016-0122-0) contains supplementary material, which is available to authorized users.

No MeSH data available.


Related in: MedlinePlus