Limits...
Fabrication of functional hollow microspheres constructed from MOF shells: Promising drug delivery systems with high loading capacity and targeted transport

View Article: PubMed Central - PubMed

ABSTRACT

An advanced multifunctional, hollow metal-organic framework (MOF) drug delivery system with a high drug loading level and targeted delivery was designed and fabricated for the first time and applied to inhibit tumour cell growth. This hollow MOF targeting drug delivery system was prepared via a simple post-synthetic surface modification procedure, starting from hollow ZIF-8 successfully obtained for the first time via a mild phase transformation under solvothermal conditions. As a result, the hollow ZIF-8 exhibits a higher loading capacity for the model anticancer drug 5-fluorouracil (5-FU). Subsequently, 5-FU-loaded ZIF-8 was encapsulated into polymer layers (FA-CHI-5-FAM) with three components: a chitosan (CHI) backbone, the imaging agent 5-carboxyfluorescein (5-FAM), and the targeting reagent folic acid (FA). Thus, an advanced drug delivery system, ZIF-8/5-FU@FA-CHI-5-FAM, was fabricated. A cell imaging assay demonstrated that ZIF-8/5-FU@FA-CHI-5-FAM could target and be taken up by MGC-803 cells. Furthermore, the as-prepared ZIF-8/5-FU@FA-CHI-5-FAM exhibited stronger cell growth inhibitory effects on MGC-803 cells because of the release of 5-FU, as confirmed by a cell viability assay. In addition, a drug release experiment in vitro indicated that ZIF-8/5-FU@FA-CHI-5-FAM exhibited high loading capacity (51%) and a sustained drug release behaviour. Therefore, ZIF-8/5-FU@FA-CHI-5-FAM could provide targeted drug transportation, imaging tracking and localized sustained release.

No MeSH data available.


XRD patterns of simulated ZIF-8 (A), as-synthesized hollow ZIF-8 (B) and ZIF-8/5-FU@FA-CHI-5-FAM (C).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5120282&req=5

f2: XRD patterns of simulated ZIF-8 (A), as-synthesized hollow ZIF-8 (B) and ZIF-8/5-FU@FA-CHI-5-FAM (C).

Mentions: The crystal structures of the obtained nanocrystals are studied by PXRD to verify the formation of the desired structure of ZIF-8. As depicted in Fig. 2, the XRD patterns of as-synthesized hollow ZIF-8 (Fig. 2B) and ZIF-8/5-FU@FA-CHI-5-FAM (Fig. 2C) correspond well with the simulated pattern (Fig. 2A). No impurity peaks are observed, suggesting that the ZIF-8 is well crystallized and that the intercalation of 5-FU as well as the encapsulation of FA-CHI-5-FAM only minimally impact the crystalline integrity of the ZIF-8.


Fabrication of functional hollow microspheres constructed from MOF shells: Promising drug delivery systems with high loading capacity and targeted transport
XRD patterns of simulated ZIF-8 (A), as-synthesized hollow ZIF-8 (B) and ZIF-8/5-FU@FA-CHI-5-FAM (C).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5120282&req=5

f2: XRD patterns of simulated ZIF-8 (A), as-synthesized hollow ZIF-8 (B) and ZIF-8/5-FU@FA-CHI-5-FAM (C).
Mentions: The crystal structures of the obtained nanocrystals are studied by PXRD to verify the formation of the desired structure of ZIF-8. As depicted in Fig. 2, the XRD patterns of as-synthesized hollow ZIF-8 (Fig. 2B) and ZIF-8/5-FU@FA-CHI-5-FAM (Fig. 2C) correspond well with the simulated pattern (Fig. 2A). No impurity peaks are observed, suggesting that the ZIF-8 is well crystallized and that the intercalation of 5-FU as well as the encapsulation of FA-CHI-5-FAM only minimally impact the crystalline integrity of the ZIF-8.

View Article: PubMed Central - PubMed

ABSTRACT

An advanced multifunctional, hollow metal-organic framework (MOF) drug delivery system with a high drug loading level and targeted delivery was designed and fabricated for the first time and applied to inhibit tumour cell growth. This hollow MOF targeting drug delivery system was prepared via a simple post-synthetic surface modification procedure, starting from hollow ZIF-8 successfully obtained for the first time via a mild phase transformation under solvothermal conditions. As a result, the hollow ZIF-8 exhibits a higher loading capacity for the model anticancer drug 5-fluorouracil (5-FU). Subsequently, 5-FU-loaded ZIF-8 was encapsulated into polymer layers (FA-CHI-5-FAM) with three components: a chitosan (CHI) backbone, the imaging agent 5-carboxyfluorescein (5-FAM), and the targeting reagent folic acid (FA). Thus, an advanced drug delivery system, ZIF-8/5-FU@FA-CHI-5-FAM, was fabricated. A cell imaging assay demonstrated that ZIF-8/5-FU@FA-CHI-5-FAM could target and be taken up by MGC-803 cells. Furthermore, the as-prepared ZIF-8/5-FU@FA-CHI-5-FAM exhibited stronger cell growth inhibitory effects on MGC-803 cells because of the release of 5-FU, as confirmed by a cell viability assay. In addition, a drug release experiment in vitro indicated that ZIF-8/5-FU@FA-CHI-5-FAM exhibited high loading capacity (51%) and a sustained drug release behaviour. Therefore, ZIF-8/5-FU@FA-CHI-5-FAM could provide targeted drug transportation, imaging tracking and localized sustained release.

No MeSH data available.