Limits...
Characterization of a novel hatching enzyme purified from starfish Asterina pectinifera

View Article: PubMed Central - PubMed

ABSTRACT

Hatching enzyme is a protease which can degrade the membrane of egg. In this study, a hatching enzyme was purified from starfish (Asterina pectinifera) with 6.34 fold of purification rate, 5.04 % of yield, and 73.87 U/mg of specific activity. The molecular weight of starfish hatching enzyme was 86 kDa, which was reduced to 62 kDa after removal of N-linked oligosaccharides. The optimal pH and temperature of the hatching enzyme activity were pH 7.0 and 40 °C, respectively, while those of stability were pH 8 and 20 °C. The kinetic parameters, Vmax, Km, Kcat and Kcat/Km values were 0.197 U/ml, 0.289 mg/ml, 112.57 s−1, and 389.52 ml/mg s, respectively. Zn2+ increased the enzyme activity by 167.28 %, while EDTA, TPCK, TGCK, leupeptin, PMSF, and TLCK decreased. In addition, Ca2+, Mg2+, and Cu2+ did not affect the enzyme activity. The starfish hatching enzyme activity pretreated with EDTA was recovered by Zn2+. Therefore, the starfish hatching enzyme was classified as a serine-zinc protease.

No MeSH data available.


Effects of pH and temperature on the proteolytic activity and stability of hatching enzyme
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5120168&req=5

Fig3: Effects of pH and temperature on the proteolytic activity and stability of hatching enzyme

Mentions: The starfish hatching enzyme exhibited a higher activity in the range of pH 6.0–9.0 and maximum activity at pH 7.0 (Fig. 3). This enzyme was stable at pH 6.0–9.0 and had the maximum stability at pH 8.0 (Fig. 3). The maximum activity pH (7.0) of the starfish hatching enzyme in this study was the same as pH 7.0 of brine shrimp and lower than those of the hatching enzyme of sea urchin (pH 8.0) (Roe and Lennarz 1990; Li and Kim 2014), A. amurensis (pH 8.0) (Li and Kim 2013), O. latipes (LCE pH 8.6; HCE pH 8.0, 8.7) (Yasumasu et al. 1989a, b), S. gairdneri (pH 8.0–8.5) (Hagenmaier 1974), sea squirt (pH 8.5) (D’Aniello et al. 1997), quail (pH 9.0) (Iwasawa et al. 2009), but higher than pH 6.0 of the shrimp hatching enzyme (Li et al. 2006). The optimal activity temperature of the starfish hatching enzyme was 40 °C (Fig. 3), whereas its maximum stability temperature was 20 °C (Fig. 3). The optimal activity temperature of the starfish hatching enzyme was the same as 40 °C of the sea urchin (Nomura et al. 1991), brine shrimp (Fan et al. 2010), and shrimp (Li et al. 2006), but higher than 30 °C of frog (Roe and Lennarz 1990; Kester et al. 1967), O. latipes (Yasumasu et al. 1989a, b), and A. amurensis (Li and Kim 2013). These stable pH and temperature of the starfish hatching enzyme are important to skincare because the acidic pH (4.4–5.6) and the imbalance change in skin permit for normal exfoliation of surface dead cells well (Natalia and Varinia 2010). Furthermore, in the early state of injury or wound healing, the considerable fibrinogen from the liver is deposited as fibrin or fibronectin on the gap of the damage part (Brown et al. 1993). Meanwhile, the dermal fibroblasts begin to cluster to this fibrin matrix, over-accumulate collagen and then built the skin contraction as collagen-like tissue (Clark 1993). Hence, the over-accumulation of collagen is responsible for the unsmooth skin of scar or keloid. Li and Kim (2014) reported that the A. ammurensis starfish hatching enzyme had comparable ability to collagenase and α-chymotrypsin, which degraded collagen and fibrinogen efficiently. In addition, the A. ammurensis starfish hatching enzyme had the potential application to remove the matrix composition in scar or keloid tissue. It is generally known that the temperature and pH of human skin are 28–32 °C and pH 7.0, respectively (Plasencia et al. 2007). Therefore, the A. pectinifera starfish hatching enzyme which was very stable at pH 7.0 and 20–30 °C might have a potential for the development of a skin care product.Fig. 3


Characterization of a novel hatching enzyme purified from starfish Asterina pectinifera
Effects of pH and temperature on the proteolytic activity and stability of hatching enzyme
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5120168&req=5

Fig3: Effects of pH and temperature on the proteolytic activity and stability of hatching enzyme
Mentions: The starfish hatching enzyme exhibited a higher activity in the range of pH 6.0–9.0 and maximum activity at pH 7.0 (Fig. 3). This enzyme was stable at pH 6.0–9.0 and had the maximum stability at pH 8.0 (Fig. 3). The maximum activity pH (7.0) of the starfish hatching enzyme in this study was the same as pH 7.0 of brine shrimp and lower than those of the hatching enzyme of sea urchin (pH 8.0) (Roe and Lennarz 1990; Li and Kim 2014), A. amurensis (pH 8.0) (Li and Kim 2013), O. latipes (LCE pH 8.6; HCE pH 8.0, 8.7) (Yasumasu et al. 1989a, b), S. gairdneri (pH 8.0–8.5) (Hagenmaier 1974), sea squirt (pH 8.5) (D’Aniello et al. 1997), quail (pH 9.0) (Iwasawa et al. 2009), but higher than pH 6.0 of the shrimp hatching enzyme (Li et al. 2006). The optimal activity temperature of the starfish hatching enzyme was 40 °C (Fig. 3), whereas its maximum stability temperature was 20 °C (Fig. 3). The optimal activity temperature of the starfish hatching enzyme was the same as 40 °C of the sea urchin (Nomura et al. 1991), brine shrimp (Fan et al. 2010), and shrimp (Li et al. 2006), but higher than 30 °C of frog (Roe and Lennarz 1990; Kester et al. 1967), O. latipes (Yasumasu et al. 1989a, b), and A. amurensis (Li and Kim 2013). These stable pH and temperature of the starfish hatching enzyme are important to skincare because the acidic pH (4.4–5.6) and the imbalance change in skin permit for normal exfoliation of surface dead cells well (Natalia and Varinia 2010). Furthermore, in the early state of injury or wound healing, the considerable fibrinogen from the liver is deposited as fibrin or fibronectin on the gap of the damage part (Brown et al. 1993). Meanwhile, the dermal fibroblasts begin to cluster to this fibrin matrix, over-accumulate collagen and then built the skin contraction as collagen-like tissue (Clark 1993). Hence, the over-accumulation of collagen is responsible for the unsmooth skin of scar or keloid. Li and Kim (2014) reported that the A. ammurensis starfish hatching enzyme had comparable ability to collagenase and α-chymotrypsin, which degraded collagen and fibrinogen efficiently. In addition, the A. ammurensis starfish hatching enzyme had the potential application to remove the matrix composition in scar or keloid tissue. It is generally known that the temperature and pH of human skin are 28–32 °C and pH 7.0, respectively (Plasencia et al. 2007). Therefore, the A. pectinifera starfish hatching enzyme which was very stable at pH 7.0 and 20–30 °C might have a potential for the development of a skin care product.Fig. 3

View Article: PubMed Central - PubMed

ABSTRACT

Hatching enzyme is a protease which can degrade the membrane of egg. In this study, a hatching enzyme was purified from starfish (Asterina pectinifera) with 6.34 fold of purification rate, 5.04 % of yield, and 73.87 U/mg of specific activity. The molecular weight of starfish hatching enzyme was 86 kDa, which was reduced to 62 kDa after removal of N-linked oligosaccharides. The optimal pH and temperature of the hatching enzyme activity were pH 7.0 and 40 °C, respectively, while those of stability were pH 8 and 20 °C. The kinetic parameters, Vmax, Km, Kcat and Kcat/Km values were 0.197 U/ml, 0.289 mg/ml, 112.57 s−1, and 389.52 ml/mg s, respectively. Zn2+ increased the enzyme activity by 167.28 %, while EDTA, TPCK, TGCK, leupeptin, PMSF, and TLCK decreased. In addition, Ca2+, Mg2+, and Cu2+ did not affect the enzyme activity. The starfish hatching enzyme activity pretreated with EDTA was recovered by Zn2+. Therefore, the starfish hatching enzyme was classified as a serine-zinc protease.

No MeSH data available.