Limits...
Improving the Photoelectric Characteristics of MoS 2 Thin Films by Doping Rare Earth Element Erbium

View Article: PubMed Central - PubMed

ABSTRACT

We investigated the surface morphologies, crystal structures, and optical characteristics of rare earth element erbium (Er)-doped MoS2 (Er: MoS2) thin films fabricated on Si substrates via chemical vapor deposition (CVD). The surface mopography, crystalline structure, light absorption property, and the photoelectronic characteristics of the Er: MoS2 films were studied. The results indicate that doping makes the crystallinity of MoS2 films better than that of the undoped film. Meanwhile, the electron mobility and conductivity of the Er-doped MoS2 films increase about one order of magnitude, and the current-voltage (I-V) and the photoelectric response characteristics of the Er:MoS2/Si heterojunction increase significantly. Moreover, Er-doped MoS2 films exhibit strong light absorption and photoluminescence in the visible light range at room temperature; the intensity is enhanced by about twice that of the undoped film. The results indicate that the doping of MoS2 with Er can significantly improve the photoelectric characteristics and can be used to fabricate highly efficient luminescence and optoelectronic devices.

No MeSH data available.


The surface J-V characteristic curves of the MoS2 film and the Er:MoS2 film
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC5120134&req=5

Fig3: The surface J-V characteristic curves of the MoS2 film and the Er:MoS2 film

Mentions: The surface J-V properties, carrier mobilities, and Hall coefficients of the MoS2 and Er: MoS2 samples were measured using a Hall Effect measurement system via the four measured points on the samples at dark condition, as shown in Fig. 3. The currents of the samples show a linear dependency on the applied voltage, revealing that the films have a good conductivity. The slopes of the J-V curves show the resistivity of the MoS2 samples. The curve of the Er: MoS2 film has good linearity and a small slope, with the films showing a significant reduction in resistivity when Er ions are doped. According to the equation for calculation of mobility: σ = nqμ (σ is conductivity, n is electron concentration, q is electron charge, μ is mobility), the electron motilities in the MoS2 and Er: MoS2 films are 3.996 × 103 cm2/Vs and 5.547 × 103 cm2/Vs, respectively. Note that the mobility value for the MoS2 film is obviously improved by doping Er3+. Furthermore, According to the equation for the Hall coefficients: εy = RHJxBz (εy is electric field intensity, RH is Hall coefficients, Jx is current density, Bz is magnetic induction intensity), the Hall coefficients of the MoS2 and Er: MoS2 films are 1.905 × 107 cm3/C and 4.581 × 108 cm3/C, respectively, showing that the films are p-type semiconductors. The J-V curves in the MoS2 film show a significant decrease in resistivity after Er doping. Good conductive properties can reduce the surface heat loss in the photodetector, thereby increasing the lifetime and frequency response of the MoS2 photovoltaic device.Fig. 3


Improving the Photoelectric Characteristics of MoS 2 Thin Films by Doping Rare Earth Element Erbium
The surface J-V characteristic curves of the MoS2 film and the Er:MoS2 film
© Copyright Policy - OpenAccess
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC5120134&req=5

Fig3: The surface J-V characteristic curves of the MoS2 film and the Er:MoS2 film
Mentions: The surface J-V properties, carrier mobilities, and Hall coefficients of the MoS2 and Er: MoS2 samples were measured using a Hall Effect measurement system via the four measured points on the samples at dark condition, as shown in Fig. 3. The currents of the samples show a linear dependency on the applied voltage, revealing that the films have a good conductivity. The slopes of the J-V curves show the resistivity of the MoS2 samples. The curve of the Er: MoS2 film has good linearity and a small slope, with the films showing a significant reduction in resistivity when Er ions are doped. According to the equation for calculation of mobility: σ = nqμ (σ is conductivity, n is electron concentration, q is electron charge, μ is mobility), the electron motilities in the MoS2 and Er: MoS2 films are 3.996 × 103 cm2/Vs and 5.547 × 103 cm2/Vs, respectively. Note that the mobility value for the MoS2 film is obviously improved by doping Er3+. Furthermore, According to the equation for the Hall coefficients: εy = RHJxBz (εy is electric field intensity, RH is Hall coefficients, Jx is current density, Bz is magnetic induction intensity), the Hall coefficients of the MoS2 and Er: MoS2 films are 1.905 × 107 cm3/C and 4.581 × 108 cm3/C, respectively, showing that the films are p-type semiconductors. The J-V curves in the MoS2 film show a significant decrease in resistivity after Er doping. Good conductive properties can reduce the surface heat loss in the photodetector, thereby increasing the lifetime and frequency response of the MoS2 photovoltaic device.Fig. 3

View Article: PubMed Central - PubMed

ABSTRACT

We investigated the surface morphologies, crystal structures, and optical characteristics of rare earth element erbium (Er)-doped MoS2 (Er: MoS2) thin films fabricated on Si substrates via chemical vapor deposition (CVD). The surface mopography, crystalline structure, light absorption property, and the photoelectronic characteristics of the Er: MoS2 films were studied. The results indicate that doping makes the crystallinity of MoS2 films better than that of the undoped film. Meanwhile, the electron mobility and conductivity of the Er-doped MoS2 films increase about one order of magnitude, and the current-voltage (I-V) and the photoelectric response characteristics of the Er:MoS2/Si heterojunction increase significantly. Moreover, Er-doped MoS2 films exhibit strong light absorption and photoluminescence in the visible light range at room temperature; the intensity is enhanced by about twice that of the undoped film. The results indicate that the doping of MoS2 with Er can significantly improve the photoelectric characteristics and can be used to fabricate highly efficient luminescence and optoelectronic devices.

No MeSH data available.